
UM02516

RHF4M603 LTE Cat.1 Module Hardware Manual

V0.1

Document information

Info	Content	
Keywords	RisingHF, LTE, Cat.1, GSM, Module, AT command	
Abstract	Abstract Describe RHF4M603 LTE Cat.1 Module Hardware Manual	

Contents

CHAPTER 1. INTRODUCTION	10
CHAPTER 2. MODULE OVERVIEW	11
2.1 MODULE INTRODUCTION	11
2.2 MODULE CHARACTERISTICS	11
2.3 MODULE FUNCTIONS	16
CHAPTER 3. INTERFACE APPLICATION DESCRIPTION	17
3.1 OVERVIEW OF THIS CHAPTER	17
3.2 MODULE INTERFACE	
3.2.1 Module Pin Distribution Diagram	
3.2.2 Pin Definition	
3.3 POWER INTERFACE	28
3.3.1 Power Supply Design	28
3.3.2 Power Supply Reference Circuit	
3.3.3 VDD_EXT Voltage Output	
3.4 RESET CONTROL	32
3.5 MODULE START-UP	34
3.6 Module Shutdown	
3.7 FIRMWARE DOWNLOAD	38
3.8 USB Interface	39
3.9 UART INTERFACE	40
3.9.1 Main Serial Port	40
3.9.2 Debug the Serial Port	
3.9.3 UART3	
3.10 HIBERNATION WAKE-UP	43
3.10.1 Serial Port Sleep Wake-up Control	
3.10.2 USB Sleep Wake-up Control	44
3.11 USIM INTERFACE	46
3.11.1 Reference Circuit of USIM Card	46
3.11.2 USID_DET Hot Plug Reference Design	47
3.12 Status Indication	48

3.13 I2C Bus	49
3.14 Analog Audio Interface	50
3.15 ADC INTERFACE	51
3.16 LCD Interface	52
3.17 Camera Interface	52
3.18 Matrix keyboard Interface	53
3.19 GPIO INTERFACE	54
3.20 SPI INTERFACE	54
3.21 GNSS Functional Interface	55
3.22 RADIO FREQUENCY INTERFACE	57
3.22.1 Antenna Matching Circuit	58
3.22.2 RF Wiring Reference	59
CHAPTER 4 OVERALL TECHNICAL INDICATORS	61 -
4.1 OVERVIEW OF THIS CHAPTER	61 -
4.2 OPERATING FREQUENCY	61 -
4.3 RADIO FREQUENCY CONDUCTION MEASUREMENT	62 -
4.3.1 Test Environment	62 -
4.3.2 Test Standard	62 -
4.4 CONDUCTION RECEIVING SENSITIVITY AND TRANSMISSION POWER	62 -
4.5 GNSS Receiver	64 -
4.6 Antenna Requirements	65 -
4.7 POWER CONSUMPTION CHARACTERISTICS	67 -
CHAPTER 5 INTERFACE ELECTRICAL CHARACTERISTICS	70 -
5.1 OVERVIEW OF THIS CHAPTER	70 -
5.2 Working Storage Temperature	70 -
5.3 MODULE IO LEVEL	70 -
5.4 Power Supply Characteristics	71 -
5.5 ELECTROSTATIC CHARACTERISTICS	71 -
5.6 RELIABILITY INDEX	72 -
CHAPTER 6 STRUCTURE AND MECHANICAL SPECIFICATION	74 -
6.1 OVERVIEW OF THIS CHAPTER	74 -
6.2 APPEARANCE	74 -
6.3 Mechanical Dimension	- 74 -

CHAPTER 7 PACKAGING AND PRODUCTION	76 -
7.1 OVERVIEW OF THIS CHAPTER	76 -
7.2 MODULE PACKAGING AND STORAGE	76 -
7.3 PRODUCTION WELDING	76 -
CHAPTER 8 APPENDIX	
8.1 OVERVIEW OF THIS CHAPTER	
8.2 Abbreviation	
8.3 ENCODING MODE	79
8.4 SAFETY AND PRECAUTIONS FOR USE	82
CHAPTER 9 ORDERING INFORMATION	
9.1 PART NUMBERING SCHEME	
9.2 Ordering information	
DEVICION	0.5

Image Index

FIGURE 2-1 RHF4M603 FUNCTIONAL BLOCK DIAGRAM	16
FIGURE 3-1 RHF4M603 PIN DISTRIBUTION DIAGRAM (TOP PERSPECTIVE)	18
FIGURE 3-2 DESIGN OF POWER SUPPLY	29
FIGURE 3-3 LDO LINEAR POWER SUPPLY REFERENCE CIRCUIT	30
FIGURE 3-4 REFERENCE CIRCUIT OF DC-DC POWER CONVERTER	31
FIGURE 3-5 REFERENCE CIRCUIT FOR POWER CONTROL BY PMOS TRANSISTOR	31
FIGURE 3-6 RESET REFERENCE CIRCUIT	33
FIGURE 3-7 REFERENCE CIRCUIT FOR KEY RESET	33
FIGURE 3-8 RESET TIMING DIAGRAM	34
FIGURE 3-9 STARTUP TIMING DIAGRAM	35
FIGURE 3-10 OPEN-COLLECTOR OUTPUT DRIVE CIRCUIT TO CONTROL THE PWRKEY	36
FIGURE 3-11 REFERENCE CIRCUIT FOR BUTTON PRESS STARTUP	36
FIGURE 3-12 SHUTDOWN SEQUENCE DIAGRAM	37
FIGURE 3-13 USB_BOOT REFERENCE DESIGN DRAWING	39
FIGURE 3-14 USB CONNECTION DESIGN CIRCUIT DIAGRAM	39
FIGURE 3-15 FOUR-WIRE SERIAL PORT DESIGN DRAWING	41
FIGURE 3-16 DESIGN DRAWING OF THE TWO-WIRE SERIAL PORT	42
FIGURE 3-17 LEVEL CONVERSION CHIP CIRCUIT	42
FIGURE 3-18 HARDWARE CONNECTION DIAGRAM FOR THE SLEEP WAKE-UP OF THE UART	
INTERFACE	44
FIGURE 3-19 USB REMOTE WAKE-UP/SLEEP APPLICATION	44
FIGURE 3-20 WAKE-UP/SLEEP APPLICATION WITH RI FUNCTION	45
FIGURE 3-21 WAKE-UP/SLEEP APPLICATIONS THAT DO NOT SUPPORT THE USB SUSPENSION	
FUNCTION	46
FIGURE 3-22 USIM DESIGN CIRCUIT DIAGRAM	47
FIGURE 3-23 CIRCUIT DIAGRAM OF NETWORK STATUS INDICATOR LIGHT	49

FIGURE 3-24 REFERENCE CIRCUIT DIAGRAM OF I2C INTERFACE	49
FIGURE 3-25 RECEIVER OUTPUT REFERENCE CIRCUIT	50
FIGURE 3-26 MICROPHONE INPUT REFERENCE CIRCUIT	51
FIGURE 3-27 MATRIX KEYBOARD REFERENCE CIRCUIT	54
FIGURE 3-28 SPI REFERENCE CIRCUIT (MODULE AS THE MAIN DEVICE)	55
FIGURE 3-29 NON-INDEPENDENT GNSS SCHEME	56
FIGURE 3-30 INDEPENDENT GNSS SCHEME	57
FIGURE 3-31 REFERENCE DIAGRAM OF THE RADIO FREQUENCY ANTENNA	58
FIGURE 3-32 GNSS ACTIVE ANTENNA REFERENCE DIAGRAM	58
FIGURE 3-33 THE COMPLETE STRUCTURE OF THE MICROSTRIP LINES	59
FIGURE 3-34 THE COMPLETE STRUCTURE OF THE RIBBON	60
FIGURE 3-35 SHOWS THE STRUCTURE OF THE THIRD-LAYER PCB MICROSTRIP TRANS	MISSION
LINE AT THE REFERENCE SITE	60
FIGURE 6-1 APPEARANCE DRAWING OF RHF4M603	74 -
FIGURE 6-2 MODULE FRONT AND BOTTOM VIEWS (UNIT: MILLIMETERS)	74 -
FIGURE 6-3 MODULE RECOMMENDED PACKAGING (UNIT: MILLIMETERS)	75 -
EICLIDE 7.1 DEEL OW SOLDEDING TEMPED ATLIDE CLIDVE CD A DU	77

www.risinghf.com Page6 Total 86

Table Index

TABLE 2-1 MODULE PART NUMBER LIST	11
TABLE 2-2 KEY FEATURES	12
TABLE 3-1PIN DEFINITIONS	19
TABLE 3-2 IO PARAMETER DEFINITIONS	21
TABLE 3-3 PIN DESCRIPTION	21
TABLE 3-4 POWER INTERFACE DEFINITION	28
TABLE 3-5 POWER SUPPLY DESIGN DESCRIPTION	29
TABLE 3-6 DEFINITION OF RESET PINS	32
TABLE 3-7 RESET METHODS	32
TABLE 3-8 RESET PIN PARAMETERS	33
TABLE 3-9 DEFINITIONS OF POWER ON/OFF PINS	34
TABLE 3-10 STARTUP TIMING PARAMETERS	35
TABLE 3-11 MODULE SHUTDOWN METHODS	37
TABLE 3-12 SHUTDOWN TIMING PARAMETERS	37
TABLE 3-13 PIN DEFINITIONS OF USB_BOOT INTERFACE	38
TABLE 3-14 USB INTERFACE PIN DEFINITIONS	39
TABLE 3-15 DEFINITION OF MAIN SERIAL PORT SIGNAL	40
TABLE 3-16 DEFINITIONS OF DEBUG SERIAL PORT PINS	42
TABLE 3-17 DEFINITION OF AUXILIARY SERIAL PORT INTERFACE	43
TABLE 3-18 DEFINITION OF SIM CARD SIGNAL	46
TABLE 3-19 DEFINITION OF STATUS INDICATOR PINS	48
TABLE 3-20 MODULE OPERATING STATUS INDICATION	48
TABLE 3-21 MODULE NETWORK STATUS INDICATION	48
TABLE 3-22 DEFINITION OF I2C PINS	49
TABLE 3-23 DEFINITIONS OF ANALOG AUDIO OUTPUT AND INPUT PINS	50

TABLE 3-24 ADC PIN DEFINITIONS
TABLE 3-25 DEFINITIONS OF LCD INTERFACE PINS
TABLE 3-26 PIN DEFINITIONS OF THE CAMERA INTERFACE
TABLE 3-27 DEFINITIONS OF KEYBOARD INTERFACE PINS
TABLE 3-28 GPIO PIN DEFINITIONS
TABLE 3-29 SPI PIN DEFINITIONS 54
TABLE 3-30 GNSS PIN DEFINITIONS
TABLE 3-31 ANTENNA INTERFACE PIN DEFINITIONS
TABLE 4-1 GSM FREQUENCY TABLE 61 -
TABLE 4-2 LTE FREQUENCY TABLE 61
TABLE 4-3 GNSS RADIO FREQUENCY TABLE 62
TABLE 4-4 TEST INSTRUMENTS 62 -
TABLE 4-5 GSM RADIO FREQUENCY SENSITIVITY INDEX 62 -
TABLE 4-6 LTE RF SENSITIVITY INDICATORS 62 -
TABLE 4-7 LTE RADIO FREQUENCY TRANSMISSION POWER INDEX 63 -
TABLE 4-8 GSM RADIO FREQUENCY TRANSMISSION POWER INDEX 63 -
TABLE 4-9 GNSS PERFORMANCE PARAMETERS 64 -
TABLE 4-10 ANTENNA INDEX REQUIREMENTS 66 -
TABLE 4-11 DORMANT IDLE POWER CONSUMPTION 67 -
TABLE 4-12 LTE DATA TRANSMISSION POWER CONSUMPTION (GNSS FUNCTION DISABLED) 68 -
TABLE 4-13 GSM CALL POWER CONSUMPTION (GNSS FUNCTION DISABLED) 69 -
TABLE 4-14 GPRS DATA TRANSMISSION POWER CONSUMPTION (GNSS FUNCTION OFF) 69 -
TABLE 4-15 EDGE DATA TRANSMISSION POWER CONSUMPTION (GNSS FUNCTION DISABLED)- 69
TABLE 5-1 WORKING STORAGE TEMPERATURE OF RHF4M603 MODULE 70 -
TABLE 5-2 ELECTRICAL CHARACTERISTICS OF RHF4M603 MODULE 70 -
TABLE 5-3 WORKING VOLTAGE OF RHF4M603 MODULE 71 -
TABLE 5-4 ESD CHARACTERISTICS OF RHF4M60372 -

RHF4M603 LTE Cat.1 Module Hardware Manual

TABLE 5-5 RELIABILITY TEST OF RHF4M603	- 72 -
TABLE 7-1 REFLUX PROCESS PARAMETERS TABLE	- 77 -
TABLE 8-1 ABBREVIATIONS OF TERMS	78
TABLE 8-2 TIME SLOT ALLOCATION TABLE FOR DIFFERENT LEVELS OF GPRS/EDGE	79
TABLE 8-3 MAXIMUM RATE OF GPRS	80
TABLE 8-4 MAXIMUM RATE OF EDGE	80
TABLE 8-5 MAXIMUM RATE OF LTE-FDD DL	80
TABLE 8-6 MAXIMUM UL RATE OF LTE-FDD	81

www.risinghf.com Page9 Total 86

Chapter 1. Introduction

This document is the hardware manual of the LTE Cat1 module RHF4M603, which aims to describe the hardware composition and functional characteristics of the module, and also the application interface definition, use instructions, electrical and mechanical properties, etc. Combined with this document and other application documents, users can quickly use this module to design wireless application schemes.

www.risinghf.com Page 10 Total 86

Chapter 2. Module Overview

2.1 Module introduction

RHF4M603 module is a LTE Cat.1 bis + GNSS positioning two-in-one wireless communication module based on ASR1603 platform, which supports multi-band and cost-effective in overseas markets. The module supports data connection communication protocols such as LTE-FDD, EDGE, GPRS and GSM, and supports up to 10Mbps download rate and 5Mbps upload rate. It can provide voice function for customer specific scene application.

The RHF4M603 module is an LCC+LGA packaged patch module with a compact size of only (24 \pm 0.1) mm * (24 \pm 0.1) mm * (2.4 \pm 0.2) mm, can meet almost all M2M application needs.

RHF4M603 can be applied in the following situations:

- ♦ Mobile computing devices
- ♦ Automated industry
- ♦ Remote monitoring
- ♦ Tracking and positioning system
- ♦ Smart metering
- ♦ Wireless advertising, multimedia
- ♦ Security system
- ♦ Wireless POS machine

2.2 Module Characteristics

Table 2-1 Module part number list

Part number	Region	Band	RAM+Flash	GNSS	
RHF4M603CX-EU	Europe Australia Asia	LTE: B1/B3/B5/B7/B8/B20/B28	8MB+8MB	×	
RHF4M603CG-EU				√	
RHF4M603SX-EU			GSM: 850/900/180		×
RHF4M603SG-EU			16MB+8MB	√	

www.risinghf.com Page11 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

RHF4M603EX-EU			15115 15115	×
RHF4M603EG-EU			16MB+16MB	√
RHF4M603CX-LA			0.45	×
RHF4M603CG-LA			8MB+8MB	√
RHF4M603SX-LA	Latin	LTE: B1/B2/B3/B4/B5/B7/B8/B28/B66	46140 0140	×
RHF4M603SG-LA	America	GSM: 850/900/1800/1900	16MB+8MB	√
RHF4M603EX-LA				×
RHF4M603EG-LA			16MB+16MB	√

Table 2-2 Key features

Table 2-2 Key features			
Featur	es	Description	
Physical Property		(24 ± 0.1) mm * (24 ± 0.1) mm * (2.4 ± 0.2) mm	
Mount method		LCC+LGA packaging, SMT	
Working Voltage		3.3V ~ 4.2V typical 3.7V	
Energy	Saving Current	Sleep current < 2mA	
	USIM	Two groups of USIM cards are supported, and the module supports 3.0V and 1.8V USIM cards	
	USB	 ♦ Comply with USB2.0 specification (only support slave mode), data transfer rate up to 480Mbps ♦ It is used for AT command, data transfer, software debugging and software upgrade ♦ USB driver supports Windows/Linux/Android etc 	
Inter	UART	 Main serial port (4-wire): ♦ Used for AT commands and data transfers ♦ Support RTS and CTS hardware flow control ♦ The baud rate is up to 3.6Mbps, and the default is 115200bps Auxiliary serial port (2 lines): ♦ By default, it is connected to GNSS serial port for data through transmission ♦ The default baud rate is 115200bps Debugging serial port (2 lines): ♦ For debugging information output, print module log ♦ The default baud rate is 115200bps 	

www.risinghf.com Page12 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

I2C		♦ Conform to I2C bus protocol			
	120	♦ The high-speed mode supports up to 3.4Mbps			
	SPI	♦ Support host mode, up to 52M clock frequency			
Audio interface		♦ Support a set of analog audio input interfaces			
	Audio interrace	♦ Support a set of analog audio output interfaces			
	ADC interface				
	ADC interface				
	Status	♦ NET_STATUS network operation status indication			
	Indication	♦ STATUS module running status indicator			
	BOOT	→ Forced download interface			
	I CD*				
	LCD*				
		♦ Supports up to 0.3MP pixels, does not support video mode			
	Camera*				
		Class 4 (33dBm±2dB) for GSM850/EGSM900:			
		Class 1 (30dBm±2dB) for DCS1800/PCS1900:			
		Class E2 (26dBm±3dB) for GSM850/EGSM900 8-PSK			
Trans	smission Power	Class E2 (25dBm±3dB) for DCS1800/PCS1900 8-PSK			
		Class 3 (23dBm±2dB) for LTE bands			
		Note: In the 4-slot transmission mode of the GPRS network, the maximum output			
		power will be reduced by 3dB. This design complies with the GSM specifications outlined in Section 13.16 of 3GPP TS 51.010-1.			
LTE	E Data Service				
		EDGE:			
		Support EDGE multi slot level 12			
		Support GMSK and 8-PSK modulation and coding methods			
		Supports a maximum downlink speed of 236.8Kbps and a			
GSM	Characteristics	maximum uplink speed of 236.8Kbps			
		GPRS:			
		Supports GPRS multi slot level 12			
		Maximum downlink speed 85.6Kbps, maximum uplink speed			
		85.6Kbps			
	SMS	→ Text and PDU mode			
	SIVIS	♦ Peer-to-peer messaging			

www.risinghf.com Page13 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

	♦ Short message cell broadcast
	♦ Short message storage: Stored in USIM card and ME,
	default in ME
Wi-Fi Scan	♦ Support Wi-Fi hotspot scanning and Wi-Fi localization
	♦ Supports GPS, GLONASS, BDS, Galileo, QZSS
	♦ Horizontal positioning accuracy< 2m@CEP50
GNSS Characteristics	♦ Cold start sensitivity (typical value) -149dBm
	♦ Re capture sensitivity (typical value) -159dBm
	→ Tracking sensitivity (typical value) -166dBm
	♦ Support standard AT instruction set (Hayes 3GPP TS)
AT Command	27.007 和 27.005)
	→ Refer to AT command Specification for detail
Network Protocol	→ TCP/UDP/PPP/HTTP/NITZ/CMUX/RNDIS/NTP/
Network Protocol	HTTPS/PING
	♦ Main & Wi-Fi Scan Antenna Interface
Antenna interface	→ GNSS antenna interface (optional)
	\Rightarrow 50 Ω characteristic impedance
Virtual network card	♦ Support USB virtual network card
	♦ Normal operating temperature -30°C to + 75°C
Temperature range	♦ Extreme working temperature -40 °C to+85 °C
	♦ Storage temperature -40 °C to+90 °C

■ NOTE

- ♦ When the temperature ranges from -40 °C to -30 °C or+75 °C to+85 °C, some RF indicators of the module may slightly exceed the 3GPP standard range. The module can still maintain normal working status, and the RF spectrum and network are basically not affected. When the temperature returns to the normal operating temperature range, all indicators of the module can still meet the requirements of 3GPP specifications.
- ♦ The main antenna and Wi Fi Scan share the antenna interface, and the two functions cannot be used simultaneously. Time division multiplexing is required.
- ♦ * Unless otherwise specified, the (*) marked after defining module interfaces and
 pins indicates that the feature is currently under development and not supported.

www.risinghf.com Page14 Total 86

www.risinghf.com Page15 Total 86

2.3 Module Functions

RHF4M603 module mainly contains the following circuit units:

- ♦ LTE RF processing unit
- ♦ GNSS processing unit
- ♦ Power management unit
- ♦ Module interface unit

RHF4M603 functional block diagram:

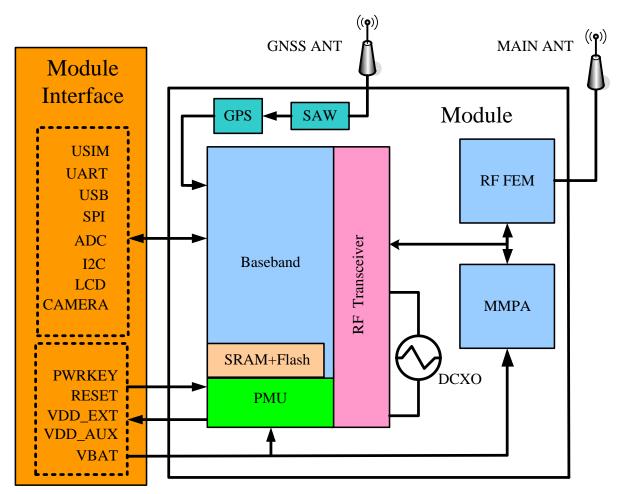


Figure 2-1 RHF4M603 functional block diagram

www.risinghf.com Page16 Total 86

Chapter 3. Interface Application Description

3.1 Overview of this Chapter

This chapter mainly describes the interface definition and application of the module. It consists of the following parts:

- ♦ Module Pin Distribution Diagram
- ♦ Pin Definition
- ♦ power Interface
- ♦ USB Interface
- ♦ USIM Interface
- ♦ UART Interface
- ♦ ADC Interface
- ♦ Audio Interface
- ♦ LCD*
- ♦ Camera*
- ♦ SPI Interface
- ♦ RF Antenna Interface

www.risinghf.com Page17 Total 86

3.2 Module Interface

3.2.1 Module Pin Distribution Diagram

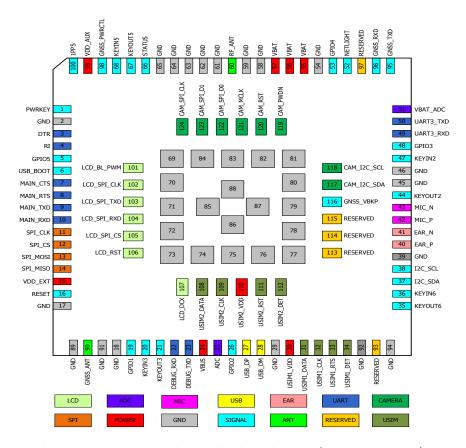


Figure 3-1 RHF4M603 Pin Distribution Diagram (TOP Perspective)

□ NOTE

- ♦ All RESERVED and unused pins should be suspended.
- ♦ USB_BOOT pin should not be pulled down before the module is successfully powered.
- ♦ The GNSS function of the module is optional:

When the module GNSS function is not selected, UART3 can be used as an auxiliary serial port function.

When selecting the GNSS function module, UART3 can be connected to the GNSS UART pin for GNSS transparent transmission.

www.risinghf.com Page18 Total 86

3.2.2 Pin Definition

RHF4M603 module has a total of 124 pins, of which 80 are LCC pins and the remaining 44 are LGA pins. The pin definition is shown in the following table:

Table 3-1Pin Definitions

	1 abic 3-11 ii		
Pin number	Pin Name	Pin number	Pin Name
1	PWRKEY	2	GND
3	DTR	4	RI
5	GPIO5	6	USB_BOOT
7	MAIN_CTS	8	MAIN_RTS
9	MAIN_TXD	10	MAIN_RXD
11	SPI_CLK	12	SPI_CS
13	SPI_MOSI	14	SPI_MISO
15	VDD_EXT	16	RESET
17	GND	18	GND
19	GPIO1	20	KEYIN3
21	KEYOUT3	22	DBG_RXD
23	DBG_TXD	24	VBUS
25	ADC	26	GPIO2
27	USB_DP	28	USB_DM
29	GND	30	USIM1_VDD
31	USIM1_DATA	32	USIM1_CLK
33	USIM1_RST	34	USIM1_DET
35	KEYOUT6	36	KEYIN6
37	I2C_SDA	38	I2C_SCL
39	GND	40	EAR_P
41	EAR_N	42	MIC_P
43	MIC_N	44	KEYOUT2
45	GND	46	GND
47	KEYIN2	48	GPIO3
49	UART3_RXD	50	UART3_TXD

www.risinghf.com Page19 Total 86

Ris	ina	HF
• • • •		

RHF4M603 LTE Cat.1 Module Hardware Manual

51	VBAT_ADC	52	NETLIGHT
53	GPIO4	54	GND
55	VBAT	56	VBAT
57	VBAT	58	GND
59	GND	60	RF_ANT
61	GND	62	GND
63	GND	64	GND
65	GND	66	STATUS
67	KEYOUT5	68	KEYIN5
69	GND	70	GND
71	GND	72	GND
73	GND	74	GND
75	GND	76	GND
77	GND	78	GND
79	GND	80	GND
81	GND	82	GND
83	GND	84	GND
85	GND	86	GND
87	GND	88	GND
89	GND	90	GNSS_ANT
91	GND	92	GND
93	RESERVED	94	GND
95	GNSS_TXD	96	GNSS_RXD
97	RESERVED	98	GNSS_PWRCTL
99	VDD_AUX	100	1PPS
101	LCD_BL_PWM*	102	LCD_SPI_CLK*
103	LCD_SPI_TXD*	104	LCD_SPI_RXD*
105	LCD_SPI_CS*	106	LCD_RST*
107	LCD_DCX*	108	USIM2_DATA
109	USIM2_CLK	110	USIM2_VDD
111	USIM2_RST	112	USIM2_DET
113	RESERVED	114	RESERVED

www.risinghf.com Page20 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

115	RESERVED	116	GNSS_VBKP
117	CAM_I2C_SDA*	118	CAM_I2C_SCL*
119	CAM_PWDN*	120	CAM_RST*
121	CAM_MCLK*	122	CAM_SPI_D0*
123	CAM_SPI_D1*	124	CAM_SPI_CLK*

Table 3-2 IO Parameter Definitions

Symbolic Mark	Description
Ю	Two-Way Input and Output
PI	Power Input
PO	Power Output
AI	Analog Input
AO	Analog Output
AIO	Analog input/output
DI	Digital Input
DO	Digital Output
OD	Open Drain

Table 3-3 Pin Description

Power Supply					
Pin number	Pin Definition	IO	Function Description	Remarks	
15	VDD_EXT	РО	1.8V voltage output	It can provide pull-up for external GPIOs (Imax<50mA)	
24	VBUS	AI	USB insertion detection	The range is 3 to 5.25V	
99	VDD_AUX	PO	Adjustable voltage output power supply. The default voltage output is 3V	It can provide power for GNSS active antennas or peripheral devices such as LCD, with a maximum current of	

www.risinghf.com Page21 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

				50mA
30	USIM1_VDD	РО	USIM1 power supply	The module
110	USIM2_VDD	РО	USIM2 power supply	automatically recognizes 1.8V or 3.0V SIM cards
55,56,57	VBAT	PI	Module main power supply	The power supply needs to have a current-carrying capacity of at least 2A
2,17-18,29,39,45 1-65,69-89,91-9			GND	
Module on/off a	and Reset			
Pin Number	Pin Definition	Ю	Function Description	Remarks
1	PWRKEY	DI	Power on/off pin	Default low level is valid
16	RESET	DI	Reset pin, internally pull up to VDD_EXT	Active low
Status Indication	on .			
Pin Number	Pin Definition	Ю	Function Description	Remarks
52	NETLIGHT	DO	Module network status indication	1.8V level. If not in use, it remains suspended
66	STATUS	DO	Module operation status indication	1.8V level. If not in use, it remains suspended
Debug the Seria	al Port			
Pin Number	Pin Definition	IO	Function Description	Remarks
22	DBG_RXD	DI	Debug the serial port data reception	1.8V level. If not in
			<u></u>	use, it remains
23	DBG_TXD	DO	Debug the serial port data transmission	suspended

www.risinghf.com Page22 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

Pin Number	Pin Definition	Ю	Function Description	Remarks
49	UART3_RXD	DI	UART3 data reception	1.8V level. If not in
50	UART3_TXD	DO	UART3 data	use, it remains
30	UAKI3_IAD	DO	transmission	suspended
Main Serial Por	rt			
Pin Number	Pin Definition	IO	Function Description	Remarks
3	DTR	DI	Used for the host	1.8V level. If not in use, it remains
			wake-up module	suspended
			Used for module	1.8V level. If not in
4	RI	DO	wake-up of the host	use, it remains
			wake up of the nost	suspended
7	MAIN_CTS	DO	DTE Clear Send	CTS connected to
				the main control
8	MAIN_RTS	DI	DTE request is sent	Connect to the main
			1	control RTS
9	MAIN_TXD	DO	Main serial port data transmission	1.8V level. If not in
			Main serial port data	use, it remains
10	MAIN_RXD	DI	reception	suspended
SPI Interface			reception	
Pin Number	Pin Definition	IO	Function Description	Remarks
11	SPI_CLK	DO	SPI clock output	
12	SPI_CS	DO	SPI chip selection signal	1.8V level. If not in use, it remains
13	SPI_MOSI	DO	SPI data output	suspended
14	SPI_MISO	DI	SPI data input	
USB Interface	•		•	
Pin Number	Pin Definition	Ю	Function Description	Remarks
24	USB_VBUS	AI	USB insertion detection	3V~5.25V

www.risinghf.com Page23 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

				l
			positive signal	impedance
28	USB_DM	AIO	USB bus differential	90Ω differential
20	OSB_DIVI	7110	negative signal	impedance
I2C Interface				
Pin Number	Pin Definition	Ю	Function Description	Remarks
37	I2C_SDA	IO	I2C bus data	1.8V level An
38	I2C CCI	DO	I2C bus clock	external pull-up
38	I2C_SCL	ВО	12C bus clock	resistor is required
Analog Audio				
Pin Number	Pin Definition	Ю	Function Description	Remarks
40	EAR_P	AO	Audio receiver output (+)	
41	EAR_N	AO	Audio receiver output (-)	If not in use, it will
42	MIC_P	AI	Audio microphone input (+)	be suspended
43	MIC_N	AI	Audio microphone input (-)	
USIM Interface	e			
Pin Number	Pin Definition	IO	Function Description	Remarks
30		20	Power supply for	Pull up the internal
	USIM1_VDD	PO	USIM card 1	4.7K resistor to
31	USIM1_DATA	DIO	USIM card 1 data	USIM1-VDD
32	USIM1_CLK	DO	USIM card 1 clock	
33	USIM1_RST	DO	USIM card 1 reset	
34	USIM1_DET	DI	USIM card 1 hot plug detection	USIM1 hot plug detection
108	USIM2_DATA	DIO	USIM card 2 data	Pull up the internal
100	_			1
110	USIM2_VDD	РО	USIM card 2 power supply	4.7K resistor to USIM2-VDD
		PO DO		
110	USIM2_VDD		supply	

www.risinghf.com Page24 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

112	USIM2_DET	DI	USIM card 2	USIM2
112	USHWIZ_DET	DI	hot-swappable test	hot-swappable test
USB_BOOT In	terface			
Pin Number	Pin Definition	IO	Function Description	Remarks
6	USB_BOOT	DI	Forced download and startup	Low level is effective. Do not pull down before the module is powered
ADOLLE				on
ADC Interface	-	7.0		
Pin Number	Pin Definition	IO	Function Description	Remarks
25	ADC	AI	12-bit universal analog-to-digital conversion	Input range: 0-1.8V
51	VBAT_ADC	AI	12-bit VBAT analog-to-digital conversion	The input range is 0 to VBAT
General-Purpo	se GPIO			
General-Purpo	se GPIO Pin Definition	Ю	Function Description	Remarks
		IO DIO	Function Description Universal input/output port	PU, 1.8V. If not in
Pin Number	Pin Definition		Universal input/output	
Pin Number 5	Pin Definition GPIO5	DIO	Universal input/output port Universal input/output	PU, 1.8V. If not in use, leave it suspended PU, 1.8V. If not in
Pin Number 5	Pin Definition GPIO5 GPIO1	DIO	Universal input/output port Universal input/output port Universal input/output	PU, 1.8V. If not in use, leave it suspended
Pin Number 5 19 26	Pin Definition GPIO5 GPIO1 GPIO2	DIO DIO	Universal input/output port Universal input/output port Universal input/output port Universal input/output port Universal input/output	PU, 1.8V. If not in use, leave it suspended PU, 1.8V. If not in use, leave it
Pin Number 5 19 26 48	Pin Definition GPIO5 GPIO1 GPIO2 GPIO3	DIO DIO DIO	Universal input/output port Universal input/output	PU, 1.8V. If not in use, leave it suspended PU, 1.8V. If not in use, leave it suspended PU, 1.8V. If not in use, leave it suspended
Pin Number 5 19 26 48	Pin Definition GPIO5 GPIO1 GPIO2 GPIO3	DIO DIO DIO	Universal input/output port Universal input/output	PU, 1.8V. If not in use, leave it suspended PU, 1.8V. If not in use, leave it suspended PU, 1.8V. If not in use, leave it suspended

www.risinghf.com Page25 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

	M*		regulation	has functions to be		
			Togulation	developed and		
102	LCD_SPI_CL K*	DO	SPI clock signal	remains suspended		
102	LCD_SPI_TX	DIO	CDI 1			
103	D*	DIO	SPI data output			
101	LCD_SPI_RX	D.	ary 1			
104	D*	DI	SPI data input			
107	LCD_SPI_CS	DO	SPI chip selection			
105	*	DO	signal			
106	LCD_RST*	DO	LCD reset signal			
107	LCD_DCX*	DO	LCD register selection			
Camera Interfa	ice					
Pin Number	Pin Definition	Ю	Function Description	Remarks		
117	CAM_I2C_SD	OD	CAM ICC against date			
117	A*	OD	CAM I2C serial data			
118	CAM_I2C_SC	OD	CAM I2C serial clock			
110	L*	OD	CAIVI 12C SEITAI CIOCK			
119	CAM_PWDN	DO	CAM PWDN control			
119	*		CAWIT WDN control	1 01/ 20140 20 202		
120	CAM_RST*	DO	CAM reset signal	1.8V voltage range has functions to be		
121	CAM_MCLK	DO	CAM Master clock	developed and		
121	*		CAIVI Widster Clock	remains suspended		
122	CAM_SPI_D0	DIO	CAM SPI data bit D0	10mams suspended		
122	*	DIO				
	*		Crivi Si i data on Bo			
123	CAM_SPI_D1	DIO				
123		DIO	CAM SPI data bit D1			
	CAM_SPI_D1		CAM SPI data bit D1			
123	CAM_SPI_D1	DIO				
	CAM_SPI_D1 * CAM_SPI_CL K*		CAM SPI data bit D1			
124	CAM_SPI_D1 * CAM_SPI_CL K*		CAM SPI data bit D1	Remarks		
124 Matrix key Inte	CAM_SPI_D1 * CAM_SPI_CL K*	DO	CAM SPI data bit D1 CAM SPI clock	Remarks 1.8V voltage range		

www.risinghf.com Page26 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

35	KEYOUT6	DO	Matrix key output 6	not in use
36	KEYIN6	DI	Matrix key input 6	
44	KEYOUT2	DO	Matrix key output 2	
47	KEYIN2	DI	Matrix key input 2	
67	KEYOUT5	DO	Matrix key output 5	
68	KEYIN5	DI	Matrix key input 5	
Radio Frequenc	cy Interface			
Pin Number	Pin Definition	Ю	Function Description	Remarks
60	RF_ANT	AIO	The main antenna and WI-FI Scan share the antenna, with time-division multiplexing	50Ω characteristic impedance
90	GNSS_ANT	AI	GNSS antenna	50Ω characteristic impedance
Other Interface	es			
Pin Number	Pin Definition	Ю	Function Description	Remarks
93、97、113、1	14、115		RESERVED	Stay Suspended

■ NOTE

→ The IO pin level of this module is 1.8V (except for USIM1 and USIM2, the pins of USIM1 and USIM2 support 1.8V and 3.0V respectively)

www.risinghf.com Page27 Total 86

3.3 Power Interface

The power interface of RHF4M603 module includes four parts:

- ♦ VBAT is the main power supply for module operation
- → The USIM1-VDD and USIM2-VDD modules provide power output specifically for SIM1 and SIM2 cards, supporting two voltage levels of 1.8V and 3.0V.
- ♦ The VDD_EXT pin outputs a 1.8V power supply for the internal digital circuits of the module. It can also be used in external small current circuits (Imax=50mA). When supplying power to the external circuit, it is recommended to connect a decoupling capacitor of 2.2uF to 4.7uF in parallel. When the module is powered on, VDD_EXT is turned on by default and cannot be turned off. Keep it suspended when not in use.
- ♦ The VDD_AUX pin is an adjustable voltage output power supply. The default voltage output is 3V, and it can provide a maximum current capacity of 50mA, which can supply power to GNSS active antennas or peripheral devices such as LCDS.

3.3.1 Power Supply Design

RHF4M603 power interface definition:

Table 3-4 power interface definition

pin number	Name	I/O	Description	Minim um value	Typical voltage	Maximu m value
15	VDD_EXT	РО	1.8V voltage output		1.8V	
30	USIM1_VDD	РО	SIM card 1 power supply	0V	1.8V/2.85 V	1.98/3.3V
110	USIM2_VDD	РО	SIM card 2 power supply	0V	1.8V/2.85 V	1.98/3.3V
99	VDD_AUX	РО	3.0V voltage output		3.0V	
55、56、 57	VBAT	PI	Module main power supply	3.3V	3.7V	4.2V

www.risinghf.com Page28 Total 86

The RHF4M603 module adopts a single power supply mode and provides three VBAT pins for connecting to external power supply.

When the module is registered for GSM standard data communication or call, the instantaneous high-power transmission will form a current peak, with the maximum current peak reaching 2A, which will cause a significant instantaneous voltage drop on the power supply, resulting in low voltage or insufficient supply current. The module may shut down or restart. Therefore, to reduce the power fluctuation during the operation of the module, a voltage stabilizing capacitor with a low ESR value should be used. The VBAT traces should be as short and wide as possible to reduce the equivalent impedance of the traces. In addition, to ensure the stability of the power supply, it is recommended to add a TVS diode with VRWM=4.7V, low clamping voltage and peak pulse current IPP at the front end of the power supply.

Please ensure the power supply has sufficient load capacity from VBAT, and a 220uF/6.3V tantalum capacitor can be connected in parallel near the power input. Additionally, 1uF, 0.1uF capacitors (to eliminate clock and digital signal interference) and 10pF, 33pF ceramic capacitors (to eliminate low-frequency RF interference) can be connected in parallel.

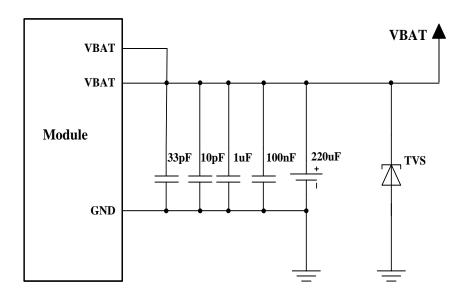


Figure 3-2 Design of Power Supply

Table 3-5 Power Supply Design Description

Recommendation value	Application Instructions	Remarks
220uF	Voltage stabilizing	Low ESR value capacitors are adopted
	capacitor	to reduce power supply fluctuations

www.risinghf.com Page29 Total 86

WS4.5D3HV	Low-capacitance TVS	Avoid power surges or ESD damage to
W 54.3D3HV	diode	the chip
1vE 100vE	Filter conscitor	Filter out the interference of digital
1uF, 100nF	Filter capacitor	signal noise
		Filter out the radio frequency
33pF, 10pF	Filter capacitor	interference in the low and medium
		frequency bands

3.3.2 Power Supply Reference Circuit

Power supply design is crucial to the performance of the module. For modules that support the GSM standard, the selected external power supply should be able to provide a current capacity of at least 2A. The external power supply can be designed using a switching DC power supply or a linear LDO power supply, and then a PMOS transistor is used to control the power supply input so that the power can be completely cut off.

If the voltage value of the external power supply is not significantly higher than the voltage value required by the module, it is recommended to use LDO power supply. For specific details, please refer to the following circuit design:

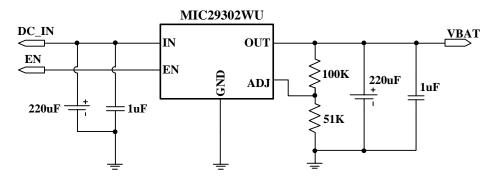


Figure 3-3 LDO linear power supply reference circuit

If the voltage value of the external power supply is significantly different from the voltage value required by the module, it is recommended to use a DC-DC switching power converter for power supply. For specific details, please refer to the following circuit design:

www.risinghf.com Page30 Total 86

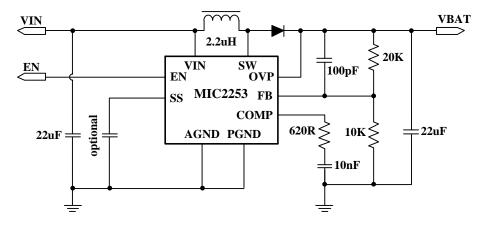


Figure 3-4 Reference circuit of DC-DC Power converter

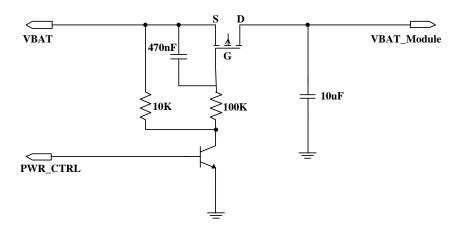


Figure 3-5 Reference circuit for power control by PMOS transistor

NOTE

- ❖ To prevent damage to the module caused by surges and overvoltage, it is recommended to connect a TVS diode with VRWM=4.5V and Ppp=1260W in parallel at the VBAT pin of the module.
- ❖ The minimum operating voltage of the module is 3.3V. When GSM transmits data or makes calls at its maximum transmission power, it will generate an instantaneous peak current of up to 2A. At the maximum transmission power of LTE, there will be approximately 600mA of continuous current. Therefore, the power supply must be able to provide sufficient load capacity; otherwise, a significant ripple voltage drop will occur on the power supply voltage, causing the module to restart or operate abnormally.
- ❖ Due to the large current consumption of the module power supply, it is recommended that the power supply PCB traces be as short and wide as possible to minimize the equivalent impedance of the VBAT traces.
- ♦ If a switching power supply is used to power the module, the power devices and power

www.risinghf.com Page31 Total 86

traces of the switching power supply should be as far away from the antenna part as possible to prevent electromagnetic interference (EMI).

3.3.3 VDD_EXT Voltage Output

After RHF4M603 module is powered on, it will output a 1.8V power supply through the PIN15 VDD_EXT pin for use by the internal digital circuits. It can also be used in external small current circuits. When supplying power to external circuits, it is recommended to connect a decoupling capacitor of 2.2uF to 4.7uF in parallel. Keep it suspended when not in use.

M NOTE

- ♦ After module is powered on, VDD EXT is turned on by default and can't be turned off.
- ❖ Peripheral devices can determine whether the module is powered on by reading the voltage of VDD_EXT.
- ♦ The output current of the VDD_EXT pin is relatively small, with Imax=50mA. This power supply is more suitable for logic level circuits.

3.4 Reset Control

The PIN16 pin of the module is the reset pin. When the application end detects an abnormality in the module or the software is unresponsive, the module can be reset. Pull this pin down for at least 300ms to complete the reset. The RESET signal is relatively sensitive to interference. A capacitor no larger than 10nF can be reserved near the signal for signal filtering, and the wiring should be kept away from the RF interference signal.

Table 3-6 Definition of Reset Pins

Pin	Signal Name	I/O Attribute	High Level Value	Description
16	RESET	DI	1.8V	Low Level Effective

Table 3-7 Reset Methods

Reset Mode	Reset Mode
AT Command Reset	AT+CFUN=1,1
Hardware Reset	The module can be RESET by pulling down the reset pin at

www.risinghf.com Page32 Total 86

least 300ms and releasing it

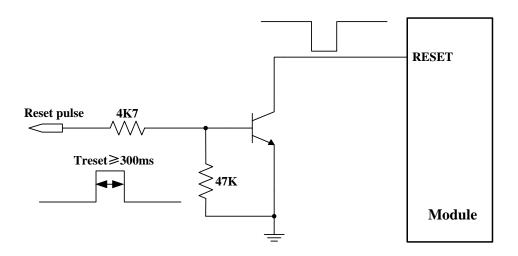


Figure 3-6 Reset reference circuit

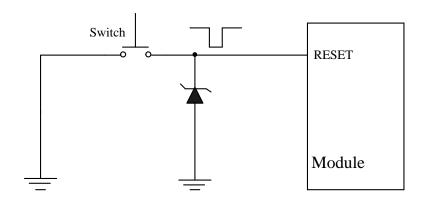


Figure 3-7 Reference circuit for key reset

Table 3-8 RESET Pin Parameters

Symbol	Description	Minimum value	Typical value	Maximum value	Unit
Treset	Low-level pulse width	300		-	ms
VIH	RESET inputs a high-level voltage		1.8	2.1	V
VIL	RESET input low-level voltage	-0.3	0	0.8	V

The RESET time sequence is as follows:

www.risinghf.com Page33 Total 86

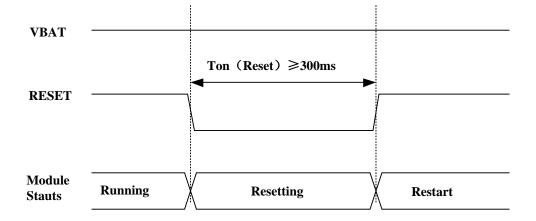


Figure 3-8 reset timing diagram

NOTE

- ❖ The RESET signal is relatively sensitive to interference. The wiring should be as far away from the radio frequency interference signal as possible and ground wrapped. A capacitor no larger than 10nF can be placed near the signal pin to filter out interference.
- ♦ The RHF4M603 module supports AT command reset. The AT command is AT+CFUN=1, and 1 can restart the module. Detailed instructions can be referred to the RHF4M603 AT instruction set manual.

3.5 Module Start-up

The PIN1 pin of the RHF4M603 module is the power-on pin. It can be powered on by pulling down the PWRKEY of the module PIN1 pin for at least 500ms. Users can determine whether the module is powered on by querying the high and low levels of the VDD_EXT pin •

Table 3-9 Definitions of Power on/Off Pins

Pin	Signal name	I/O Attribute	High-Level Value	Description
1	PWRKEY	DI	VBAT	active low voltage

The startup sequence is as follows:

www.risinghf.com Page34 Total 86

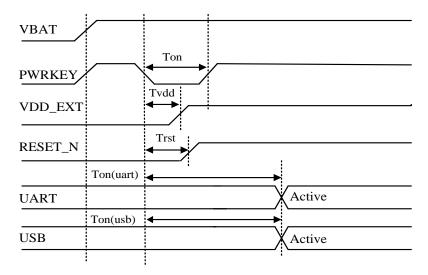


Figure 3-9 Startup timing diagram

Table 3-10 Startup Timing Parameters

Symbol	Description	Minimu m value	Typical value	Maximu m value	Unit
Ton	The module boots at a low level width	500	-	-	ms
Tvdd	VDD_EXT outputs the waiting time	-	10	-	ms
Trst	Module reset time	300	-	-	ms
Ton(usb)	Startup time (determined by usb status)		10	-	S
Ton(uart)	Startup time (judged by the status of uart)		4	-	S

It is recommended to use an open–collector output drive circuit to control the PWRKEY. After raising the base level for 500ms, it can be released, at which point the module is powered on \circ

www.risinghf.com Page35 Total 86

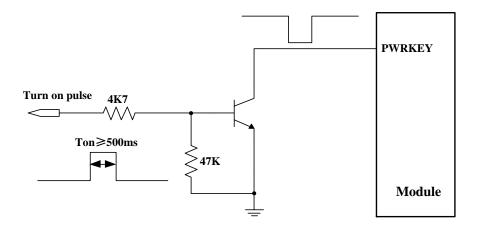


Figure 3-10 Open-collector output drive circuit to control the PWRKEY

The second way to power on is by pressing the button. Press the button for at least 500ms and then release it. At this point, the module is powered on.

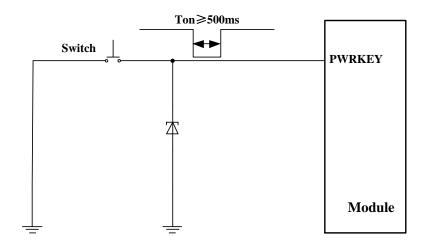


Figure 3-11 Reference circuit for button press startup

NOTE

- ♦ The module VBAT is usually stable after power-on for at least 30ms by the PWRKEY power-on action.
- ❖ If the user does not need the shutdown function, the PWRKEY can be directly pulled down to GND. It is recommended to connect a 4.7K resistor in series between GND and the PWRKEY.
- ♦ Make sure there are no large capacitors on the PWRKEY pins and their signal lines.

www.risinghf.com Page36 Total 86

3.6 Module Shutdown

RHF4M603 supports the following three shutdown methods.

Shutdown Mode	Shutdown Conditions	Description
Low-voltage shutdown	The power supply voltage is too low or there is an abnormal power failure	The module did not go through the normal shutdown process
Hardware	Pull down the PWRKEY pin for	Perform the normal shutdown
shutdown	more than 3 seconds	process
AT command shutdown	AT Command	Software shutdown

Table 3-11 Module Shutdown Methods

When the module is working normally, it cannot be shut down by cutting off the power supply, as this may damage the Flash data of the module. It is recommended to execute the shutdown process through the power on/off pin or the AT command.

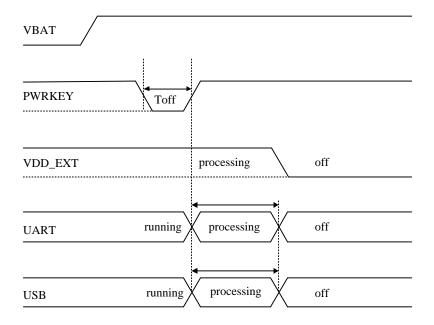


Figure 3-12 Shutdown sequence diagram

Table 3-12 Shutdown Timing Parameters

Symbol	Description	Minimum value	Typical value	Maximum value	Unit
--------	-------------	---------------	---------------	------------------	------

www.risinghf.com Page37 Total 86

RisingHF

RHF4M603 LTE Cat.1 Module Hardware Manual

Toff	Module	3	-	-	S
	shutdown low				
	level width				
Tpdp	Module system	-	5	-	s
	shutdown time				

M NOTE

- ♦ The module does not support the hardware shutdown function by default. If you need this function, you can contact your local FAE for support.
- ♦ When the module is working normally, do not shut it down by cutting off the power supply, otherwise the Flash data of the module may be damaged. It is recommended to execute the shutdown process through the PWRKEY and AT command (please refer to the RHF4M603 AT Command Specification).
- ♦ When executing the AT command to shut down, please ensure that the PWRKEY remains at a high level after the shutdown command is executed. Otherwise, after the module is shut down, it will automatically restart.

3.7 Firmware Download

The RHF4M603 supports the forced download function. Before starting up the module, pull the USB_BOOT pin to GND. Then the module will enter the download mode when starting up. At this time, the software of the module can be upgraded through the USB interface.

Table 3-13 Pin Definitions of USB_BOOT Interface

Pin Number	Pin Definition	I/O attribute	Function Description
6	USB_BOOT	DI	In the 1.8V voltage range, it is recommended to reserve test points. When the forced download function is not used, it is prohibited to pull
			is not used, it is prohibited to pull down this pin before startup.

www.risinghf.com Page38 Total 86

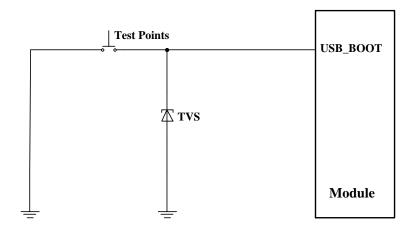


Figure 3-13 USB_BOOT reference design drawing

3.8 USB Interface

The RHF4M603 module supports one USB2.0 interface, supports device mode, but does not support USB charging function. The USB cable must comply with the USB2.0 protocol specification. The USB interface is defined as follows:

Pin Number	Signal Name	I/O Attribute	Description
24	VBUS	AI	USB insertion detection
27	USB_DP	AIO	USB differential signal +
28	USB_DM	AIO	USB differential signal -

Table 3-14 USB Interface Pin Definitions

The module, as a USB slave device, supports USB sleep and wake-up mechanisms. The reference circuit for the USB interface application is as follows:

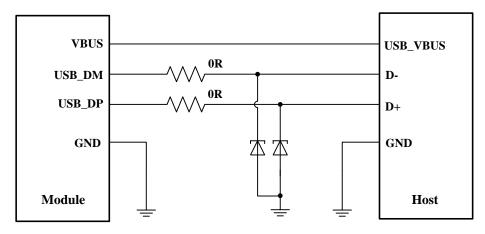


Figure 3-14 USB connection design circuit diagram

www.risinghf.com Page39 Total 86

RisingHF

M NOTE

- ♦ The USB interface supports high-speed (480Mbps) and full-speed (12Mbps) modes, so the design must strictly follow the requirements of the USB2.0 protocol.
- ❖ To enhance the anti-static performance of the USB interface, it is recommended to add ESD protection devices to the data cable. The equivalent capacitance value of the protection device should be less than 1pF, and the TVS diode should be placed close to the USB socket.
- ❖ It is recommended to string 0R resistors in series on each USB differential line, and place the resistors close to the peripheral devices.
- ♦ LAYOUT needs to strictly abide by the following rules:
 - 1) The differential impedance controlled by USB_DP and USB_DM signal lines is 90Ω .
- 2) The USB_DP and USB_DM signal lines should be of equal length, parallel, and avoid right-angle and sharp-angle routing.
- 3) The USB_DP and USB_DM signal lines are laid in the signal layer closest to the ground layer. They are laid in the upper and lower layers and protected by ground shielding on both sides.

The USB interface can support the following functions:

- ♦ Software download and upgrade
- ♦ Data communication
- ♦ AT Command

3.9 UART Interface

The RHF4M603 module provides three sets of UART interfaces. Among them, one group is the main serial port, one group is the debugging serial port, and one group is the two-wire auxiliary serial port. All serial port levels are 1.8V.

3.9.1 Main Serial Port

Main serial port: This serial port can implement AT interaction instructions and interact with peripheral device data, etc.

The baud rate of the main serial port of the module can be set to 9600,19200,38400,57600,115200,230400,460800,921600 bps, etc. The default is 115200bps.

The main serial port interface is defined as follows:

Table 3-15 Definition of Main Serial Port Signal

www.risinghf.com Page40 Total 86

Pin number	Signal name	I/O	Description	Remarks
3	DTR	DI	Used for the host wake-up module	The 1.8V voltage range
4	RI	DO	Used for the module to wake up the host	remains suspended if not in use
7	MAIN_CTS	DO	Clear the send	The CTS connected to the DTE
8	MAIN_RTS	DI	Request to send	The RTS connected to the DTE
9	MAIN_TXD	DO	Module data transmission	The 1.8V voltage range
10	MAIN_RXD	DI	Module data reception	remains suspended if not in use

When users want to use a 4-wire serial port, they can refer to the following connection methods:

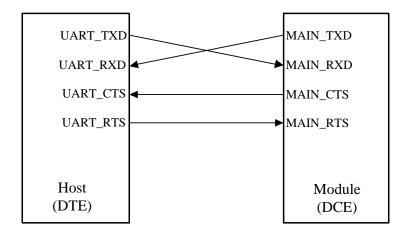


Figure 3-15 Four-wire serial port design drawing

When a two-wire serial port is needed, the following serial port design can be referred to:

www.risinghf.com Page41 Total 86

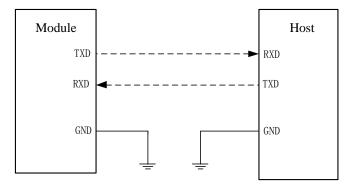


Figure 3-16 Design drawing of the two-wire serial port

The serial port of the module is at TTL 1.8V level. If the serial port needs to be connected to an MCU at 3.3V level, an external level conversion chip needs to be added to achieve level matching. The connection method of the chip can be referred to the following circuit:



Figure 3-17 Level conversion chip circuit

M NOTE

❖ It is necessary to pay attention to the input and output directions of the CTS and RTS pins of the serial port hardware flow control.

3.9.2 Debug the Serial Port

The RHF4M603 module provides a 2-wire Debug serial port for use as a debugging module. The debugging serial port supports a baud rate of 115200bps, which is used for Linux control and log printing. Test points can be reserved. Please keep them suspended when not in use.

Table 3-16 Definitions of Debug Serial Port Pins

Pin number Signal name I/O Description Remarks

www.risinghf.com Page42 Total 86

22	DBG_RXD	DI	module	The 1.8V
	_		receives data	voltage range
			module sends	remains
DBG_TXD	DO	data	suspended if	
			uata	not in use

3.9.3 UART3

Pins 49 and 50 of the module are auxiliary serial ports, which are multiplexed with the GNSS serial port function by default. When the GNSS function is not selected, the UART3 serial port can be used directly. The auxiliary serial port is defined as follows:

Table 3-17 Definition of Auxiliary Serial Port Interface

Pin number	Signal Name	I/O	Description	Remarks
49	UART3_ RXD	DI	Auxiliary serial port data reception	The 1.8V voltage range
50	UART3_ TXD	DO	Assist in serial port data transmission	remains suspended if not in use

3.10 Hibernation Wake-up

The RHF4M603 module supports the sleep wake-up function. Through sleep, the power consumption of the module can be reduced. The way to wake up from hibernation can be achieved through different interface communication methods. For details, please refer to the following content.

3.10.1 Serial Port Sleep Wake-up Control

The RHF4M603 module is connected to the host via a serial port. The module can be put into sleep mode or awakened in the following ways:

www.risinghf.com Page43 Total 86

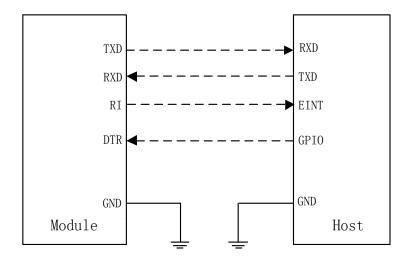


Figure 3-18 Hardware connection diagram for the sleep wake-up of the UART interface

Simultaneously satisfy the following two conditions:

- 1. The DTR remains at a high level or is suspended.
- 2. Execute the AT command: AT+CSCLK=1. The module then enters the sleep mode.

The module is awakened by pulling down the DTR of the module through the host. When the module has URC to report, the module can wake up the host through RI.

3.10.2 USB Sleep Wake-up Control

If the host supports USB suspension/interruption and remote wake-up functions, the module can enter sleep mode when the following three conditions are met simultaneously:

- ♦ AT+CSCLK=1 enables the sleep function of the module.
- ♦ The DTR pins of the module remain pulled high or suspended.
- ♦ The USB bus of the host connected to the USB interface enters the suspended state.

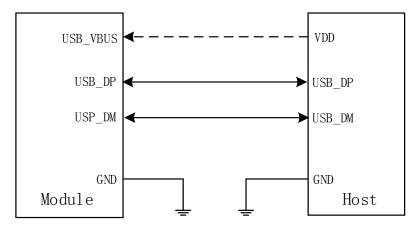
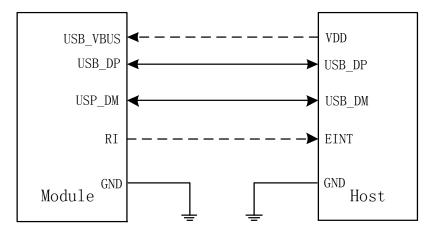


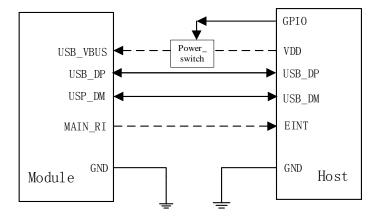
Figure 3-19 USB Remote Wake-up/Sleep Application

www.risinghf.com Page44 Total 86

If the host supports USB suspension/interruption but does not outperform the remote wake-up function, the host needs to be awakened by the RI signal. If the following three conditions are met simultaneously, the module can enter the sleep mode:

- ♦ AT+CSCLK=1 enables the sleep function of the module.
- ♦ The DTR pins of the module remain pulled high or suspended.
- ♦ The USB bus of the host connected to the USB interface enters the suspended state.




Figure 3-20 Wake-up/sleep application with RI function

M NOTE

- ♦ Sending data to the module via USB will wake up the module.
- ♦ When the module has an URC report, it will send a remote wake-up signal via the USB bus to wake up the host.

If the host does not support the USB suspension function, the USB_VBUS can be disconnected through the external GPIO to put the module into sleep mode.

- ♦ Enable the sleep function of the module with AT+CSCLK=1.
- ♦ The DTR pins of the module remain pulled high or suspended.
- ♦ Disconnect the power supply of USB VBUS.

www.risinghf.com Page45 Total 86

Figure 3-21 Wake-up/sleep applications that do not support the USB suspension function

M NOTE

- ♦ Restoring the power supply of USB_VBUS can wake up the module.
- ❖ Please pay attention to the level matching of the dashed line connection signals between the module and the host in each of the above figures.

3.11 USIM Interface

The RHF4M603 module provides two USIM card interfaces compatible with the ISO 7816-3 standard. The power supply of the USIM card is provided by the internal power manager of the module. The module supports USIM cards with voltages of 1.8V and 3.0V.

Pin number Signal Name I/O Attribute **Description** 30 USIM1 VDD PO Power supply for USIM card 1 31 USIM1 DATA DIO USIM card 1 data 32 USIM1_CLK USIM card 1 clock DO 33 USIM1 RST DO Reset USIM Card 1 34 USIM1_DET DΙ USIM card 1 hot plug detection 108 USIM2_DATA USIM card 2 data DIO 109 USIM2_CLK DO USIM card 2 clock 110 USIM2_VDD PO Power supply for USIM card 2 111 USIM2_RST DO Reset USIM Card 2 112 USIM2 DET USIM card 2 hot plug detection DI

Table 3-18 Definition of SIM Card Signal

3.11.1 Reference Circuit of USIM Card

The RHF4M603 module does not come with a USIM card slot. When users use it, they need to design a USIM card slot on their own interface board.

The reference circuit of the USIM card interface is as follows:

www.risinghf.com Page46 Total 86

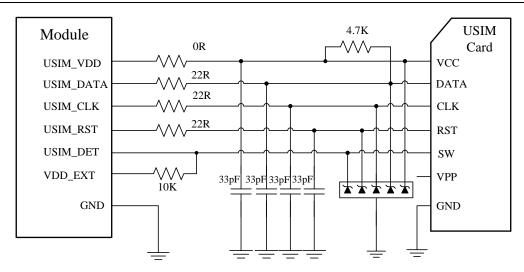


Figure 3-22 USIM design circuit diagram

■ NOTE

The circuit design of the USIM card needs to meet the EMC standards and ESD requirements. At the same time, the anti-interference ability needs to be improved to ensure that the USIM card can work stably. The following points need to be strictly adhered to during the design:

- ♦ The peripheral circuit devices of the USIM interface should be placed close to the card slot, and the USIM card slot should be arranged close to the module.
- ❖ The USIM card circuit is prone to RF interference, which may cause the card to fail to recognize or drop. Therefore, the card slot should be placed as far away as possible from the RF radiation of the antenna, and the card routing should be kept as far away as possible from RF, power and high-speed signal lines.
- ❖ To prevent instantaneous voltage overload for the USIM interface, it is recommended to connect a 22R resistor in series on each signal line path.
- ♦ The ground of the USIM card slot and the ground of the module should maintain good connectivity.
- ♦ For USIM card slots, it is advisable to choose those with metal casings as much as possible to enhance their anti-interference capability.

3.11.2 USID_DET Hot Plug Reference Design

The RHF4M603 module supports hot swapping of USIM cards. The USIM1-DET and USIM2-DET pins are used as input detection pins to determine whether the USIM card is inserted or not. The USIM1-DET pin module has been pulled up internally. The hot plug function can be turned on or off through AT+HOSCFG, and this function is turned off by

www.risinghf.com Page47 Total 86

default. (For details, please refer to the RHF4M603 AT instruction set)

3.12 Status Indication

The RHF4M603 module provides two GPIO pins to indicate the module status. The status indicator is mainly used to drive the status indicator light (it is necessary to control the on and off of the transistor to power on and off the LED light to achieve the on and off of the LED, and it is not recommended to directly drive the LED light). The following table defines the pin functions and the levels in different states respectively.

Signal Name I/O Pin **Description Remarks** Module network status 52 **NETLIGHT** DO indication 1.8V voltage range does not need to remain suspended Module operation DO **STATUS** 66 status indication

Table 3-19 Definition of Status Indicator Pins

Table 3-20	Module	Operating	Statue	Indication
1 able 5-20	Module	Oberaung	Status	marcanon

Pin Name	Operating status indication	Pin Level	Remarks
COLVENIA	Power on status	high Level	1.8V voltage range does not need to
STATUS	other	Low Level	remain suspended

Table 3-21 Module Network Status Indication

Pin Name	Operating status indication	Pin Level State	
	During the phone call	high level	
NETLIGHT	Data transmission status	Flash (125ms high/125ms low)	
	Standby state	Slow flashing (1800ms high/200ms low)	
	Web search status	Slow flashing (200ms high/1800ms low)	

The reference design drawing of the module network status indicator light is as follows:

www.risinghf.com Page48 Total 86

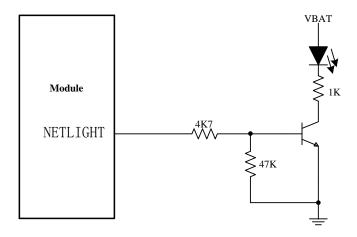


Figure 3-23 Circuit diagram of network status indicator light

M NOTE

♦ The brightness of the network indicator light can be adjusted by regulating the current-limiting resistor.

3.13 I2C Bus

The RHF4M603 module provides a set of I2C protocol interfaces, with a clock rate of 400KHz and an operating level of 1.8V.

Pin	Signal Name	I/O	Description	Remarks
37	I2C_SDA	OD	I2C bus data	It needs to be pulled up at 1.8V
38	I2C SCL	OD	I2C bus clock	externally and does not need to
30	12C_SCL	OD	12e bus clock	remain suspended

Table 3-22 Definition of I2C Pins

The connection method of the I2C reference circuit is as follows:

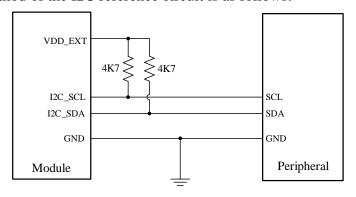


Figure 3-24 Reference circuit diagram of I2C interface

www.risinghf.com Page49 Total 86

3.14 Analog Audio Interface

The RHF4M603 module provides one analog audio input channel and one analog audio output channel. The pin definitions are as follows:

Pin	Signal Name	I/O	Description	
40	EAR_P	AO	Receiver differential output channel (+)	
41	EAR_N	AO	Receiver differential output channel (-)	No need to
42	MIC_P	AI	Microphone input channel (+)	keep it suspended
43	MIC_N	AI	Microphone input channel (-)	

Table 3-23 Definitions of Analog Audio Output and Input Pins

M NOTE

- ♦ The EAR-P and EAR-N signals are differential outputs, typically used for earpiece.
- ♦ The MIC_P and MIC_N signals are differential inputs and are usually used for electret microphone inputs.
- ❖ For the modules that support the GSM standard, it is recommended to adopt electret microphones with built-in RF filters and dual capacitors (10pF and 33pF) to filter out RF interference from the source of interference and minimize the coupled TDD noise to the greatest extent.
- ❖ To minimize signal interference as much as possible, the antenna should be kept away from audio devices and audio traces.

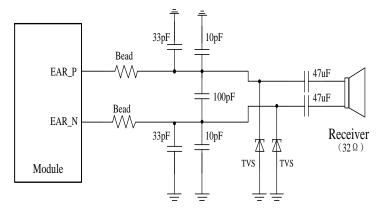


Figure 3-25 Receiver output reference circuit

www.risinghf.com Page50 Total 86

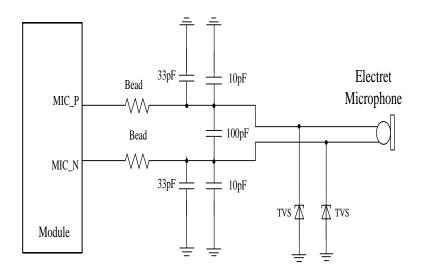


Figure 3-26 Microphone input reference circuit

3.15 ADC Interface

The RHF4M603 module provides two universal analog-to-digital converter interfaces. To improve the accuracy of ADC voltage measurement, it is recommended to cover the ground when routing the ADC.

Pin	Cional		L€	evel Value		
Number	Signal Name	Description	Minimu m value	Typical value	Maximu m value	Remarks
25	ADC	Universal	0	-	1.8V	ADC
51	VBAT_ ADC	analog-to-digit al converter interface	0	-	VBAT	resolution is 12bits

Table 3-24 ADC Pin Definitions

M NOTE

- ♦ The input voltage of each ADC pin should not exceed its corresponding voltage threshold.
- ♦ The input voltage range of the VBAT_ADC pin is 0 to VBAT. By default, it is used to read the battery voltage. When designing the hardware, 680K(1% accuracy) and 470K(1% accuracy) resistors must be used for voltage division on the periphery of the VBAT_ADC.

www.risinghf.com Page51 Total 86

♦ When the module VBAT is not powered, the ADC interface cannot be directly connected to any input voltage.

3.16 LCD Interface

Some models of RHF4M603 module can support LCD display modules with a maximum resolution of 320 * 240. Supports standard SPI4 wire single data transmission.

The LCD interface of the module does not have a dedicated TE signal. If necessary, you can choose to use GPIO simulation by yourself.

Pin Number	Signal Name	I/O	Description	Remarks
101	LCD_BL_PWM	DO	LCD backlight PWM regulation	
102	LCD_SPI_CLK*	DO	LCD SPI clock	
103	LCD_SPI_TXD*	DIO	LCD SPI data (bidirectional)	1.8V voltage
104	LCD_SPI_RXD *	DO	LCD SPI data	domain, function to be developed, keep
105	LCD_SPI_CS*	DO	LCD SPI chip selection	suspended
106	LCD_RST*	DO	LCD reset	
107	LCD_DCX*	DO	Selection of LCD SPI registers	

Table 3-25 Definitions of LCD interface Pins

3.17 Camera Interface

The camera interface of some models of RHF4M603 module supports up to 300K pixel sensors and supports SPI single or dual data cable transmission.

Twelve 20 1 in 20 limitions of the Committee investment						
Pin Number	Signal Name	I/O	Description	Remarks		
117	CAM_I2C_SD	OD	CAM dedicated I2C			
117	A*	OD	data	External 4.7K		
110	CAM_I2C_SCL	OD	CAM dedicated I2C	resistor needs to be pulled up		
118	*	OD	clock			

Table 3-26 Pin Definitions of the Camera Interface

www.risinghf.com Page52 Total 86

119	CAM_PWDN*	DO	CAM Control Signal	
120	CAM_RST*	DO	CAM reset signal	1.8V voltage
121	CAM_MCLK*	DO	CAM Master clock	domain,
122	CAM_SPI_D0*	DIO	CAM SPI data bit D0	function to be developed,
123	CAM_SPI_D1*	DIO	CAM SPI data bit D1	keep
124	CAM_SPI_CL K*	DO	CAM SPI clock	suspended

3.18 Matrix keyboard Interface

RHF4M603 module provides a set of 4×4 keyboard interfaces.

Table 3-27 Definitions of Keyboard Interface Pins

Matrix key Interface						
Pin Number	Pin Name	Ю	Function Description	Remarks		
20	KEYIN3	DI	Matrix key input 3			
21	KEYOUT3	DO	Matrix key output 3			
35	KEYOUT6	DO	Matrix key output 6	1.00		
36	KEYIN6	DI	Matrix key input 6	1.8V voltage range		
44	KEYOUT2	DO	Matrix key output 2	remains suspended if not in use		
47	KEYIN2	DI	Matrix key input 2	If not in use		
67	KEYOUT5	DO	Matrix key output 5			
68	KEYIN5	DI	Matrix key input 5			

www.risinghf.com Page53 Total 86

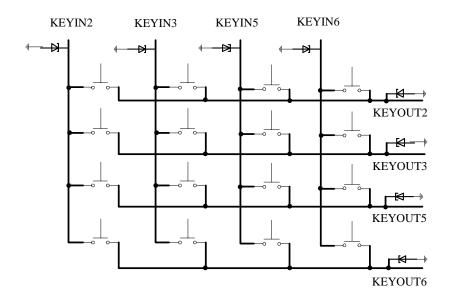


Figure 3-27 Matrix keyboard reference circuit

3.19 GPIO Interface

The RHF4M603 module provides 5 GPIO interfaces.

Pin Name of the IO **Function Description** Remarks number pipe pin Universal input/output 5 GPIO5 DIO port PU,1.8V. If not in use, leave it suspended Universal input/output 19 GPIO1 DIO port Universal input/output 26 GPIO2 DIO port PD,1.8V. If not in use, Universal input/output it is left floating 48 GPIO3 DIO port Universal input/output PU,1.8V. If not in use, 53 GPIO4 DIO leave it suspended port

Table 3-28 GPIO Pin Definitions

3.20 SPI Interface

The RHF4M603 module provides a set of hardware SPI interfaces, with a 1.8V voltage range. It only supports host mode and has a maximum clock frequency of 52MHz.

Table 3-29 SPI Pin Definitions

www.risinghf.com Page54 Total 86

Pin number	Name of the pipe pin	Ю	Function Description	Remarks
11	SPI_CLK	DO	SPI clock output	
12	SPI_CS	DO	SPI chip selection signal	1.8V voltage range remains suspended
13	SPI_MOSI	DO	SPI data output	if not in use
14	SPI_MISO	DI	SPI data input	

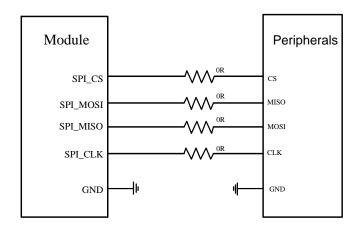


Figure 3-28 SPI reference Circuit (module as the main device)

3.21 GNSS Functional Interface

Some models of RHF4M603 module include a complete embedded GNSS solution. \\

Table 3-30 GNSS Pin Definitions

Pin Number	Signal Name	I/O	Description	Remarks
90	GNSS_A NT	AI	GNSS Antenna Interface	50Ω characteristic impedance
95	GNSS_T XD	DO	module is embedded with a GNSS serial port for transmission	1.8V Voltage Domain Scheme 1: 1K resistor series module UART3-RXD (PIN49) Solution 2: Connect a 1K resistor in series with the MCU UART_RXD
96	GNSS_R	DI	module is embedded with	1.8V voltage range

www.risinghf.com Page55 Total 86

	XD		GNSS serial port reception	Solution 1: Connect a 1K
				resistor in series with the
				module UART3_TXD
				(PIN50)
				Solution 2: Connect a 1K
				resistor in series with the
				MCU UART_TXD
100	1PPS	DO	GNSS pulse clock	Second pulse signal, used
100	1113		synchronization signal	for precise timekeeping
116	GNSS_V	DI	CNCC hooleys nower input	Power supply range:
116	BKP	PI	GNSS backup power input	1.4V-3.6V

The RHF4M603 module supports two schemes for UART transparent transmission: independent GNSS and non-independent GNSS.

Non-independent GNSS solution:

The GNSS function is fully integrated by modules. A non-independent GNSS that is powered by the module itself to the GNSS chip and UART transmission.

The reference design is as follows:

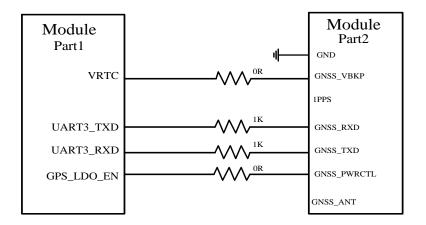


Figure 3-29 Non-independent GNSS scheme

Independent GNSS solution:

The GNSS function is fully powered by the external supply of the module and transmitted through the MCU UART to the independent GNSS chip. This wiring method is used in scenarios where GNSS operates independently when the module is not powered on.

www.risinghf.com Page56 Total 86

The reference design is as follows:

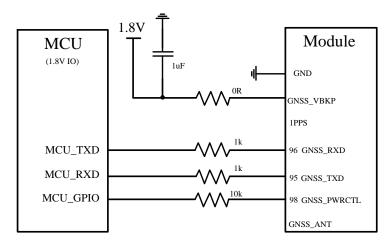


Figure 3-30 Independent GNSS Scheme

3.22 Radio Frequency Interface

The RHF4M603 module provides two antenna interfaces and one main antenna interface, which is responsible for the reception and transmission of the module's RF signals. One GNSS antenna interface, responsible for receiving satellite signals. The characteristic impedances of both antenna interfaces are 50Ω .

Pin Number	Signal Name	I/O Attribute	Description	Remarks
			Main antenna	50 Ω
60	RF_ANT	AIO	interface	characteristic
			merrace	impedance
			GNSS antenna	50 Ω
90	GNSS_ANT	AI	GNSS antenna interface	characteristic
			IIIICITACE	impedance

Table 3-31 Antenna Interface Pin Definitions

MOTE

- ♦ The module supports the Wi-Fi Scan function. Due to the shared RF_ANT antenna interface, the two functions cannot be used simultaneously and time-division multiplexing is required. Wi-Fi Scan only receives but does not transmit.
- ❖ In scenarios such as static electricity and lightning strikes, positions for TVS diode devices need to be reserved on the base plate.

www.risinghf.com Page57 Total 86

3.22.1 Antenna Matching Circuit

The 60th pin of the RHF4M603 is the main antenna interface. To facilitate antenna debugging, a π -shaped matching circuit needs to be added to the mainboard, with a 50 Ω impedance wire.

Pin 90 of the RHF4M603 is the GNSS antenna interface. To facilitate antenna debugging, a π -shaped matching circuit needs to be added to the mainboard, with a 50 Ω impedance wire.

The circuit is as shown in the following figure:

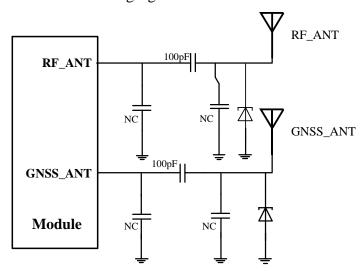


Figure 3-31 Reference diagram of the radio frequency antenna

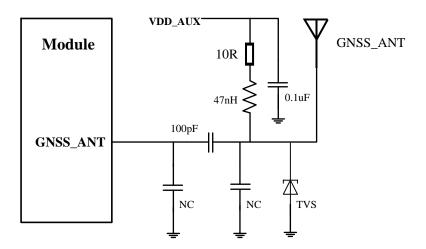


Figure 3-32 GNSS active antenna reference diagram

www.risinghf.com Page58 Total 86

M NOTE

- ♦ The matching circuit should be placed as close as possible to the antenna.
- ❖ To reduce coexistence issues and avoid interference with the receiving sensitivity, it is recommended that the isolation between antennas be above 20dB.
- ❖ The antenna is a sensitive device that is easily affected by the external surrounding environment. Therefore, it needs to be kept away from interference signals such as digital clock lines and DC power supplies. It is recommended to use a complete ground layer as the reference site.
- \Leftrightarrow The trace between the RF port of the module and the antenna should be as short as possible, and the board manufacturer needs to perform 50Ω impedance control on the RF trace.

3.22.2 RF Wiring Reference

The antenna of the RHF4M603 module is led out by pad method. Microstrip lines or other types of RF traces must be used from the antenna pad to the antenna feed point. The characteristic impedance of the signal line should be controlled at $50 \,\Omega$.

The impedance of a radio frequency (RF) signal line is determined by the dielectric constant of the material, the width of the trace (W), the ground clearance (S), and the height of the reference ground plane (H). Therefore, for RF traces, impedance simulation tools need to be used to calculate the impedance value of RF traces.

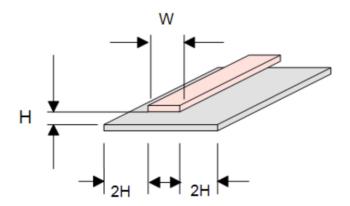


Figure 3-33 The complete structure of the microstrip lines

www.risinghf.com Page59 Total 86

Figure 3-34 The complete structure of the ribbon

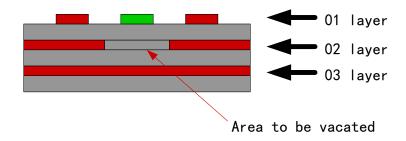


Figure 3-35 shows the structure of the third-layer PCB microstrip transmission line at the reference site

www.risinghf.com Page60 Total 86

Chapter 4 Overall technical indicators

4.1 Overview of This Chapter

The overall technical specifications of the RHF4M603 module RF include the following parts:

- ♦ Operating frequency
- ♦ Radio-frequency conduction measurement
- ♦ Conducted receiving sensitivity and transmitted power
- ♦ Antenna requirement
- ♦ Module power characteristics

4.2 Operating Frequency

Table 4-1 GSM Frequency Table

Band	Receive	Launch
GSM850	869MHz - 894MHz	824MHz - 849MHz
EGSM900	925MHz - 960MHz	880MHz - 910MHz
DCS1800	1805MHz - 1880MHz	1710MHz - 1785MHz
PCS1900	1930MHz - 1990MHz	1850MHz - 1910MHz

Table 4-2 LTE Frequency Table

Band	Up frequency	Downlink Frequency	Duplex Mode
LTE B1	1920MHz - 1980MHz	2110MHz - 2170MHz	FDD
LTE B2	1850MHz - 1910MHz	1930MHz - 1990MHz	FDD
LTE B3	1710MHz - 1785MHz	1805MHz - 1880MHz	FDD
LTE B4	1710MHz - 1755MHz	2110MHz - 2155MHz	FDD
LTE B5	824MHz - 849MHz	869MHz - 894MHz	FDD
LTE B7	2500MHz - 2570MHz	2620MHz - 2690MHz	FDD
LTE B8	880MHz - 915MHz	925MHz - 960MHz	FDD
LTE B20	832MHz - 862MHz	791MHz - 821MHz	FDD
LTE B28	703MHz - 748MHz	758MHz - 803MHz	FDD
LTE B66	1710MHz - 1780MHz	2110MHz - 2200MHz	FDD

www.risinghf.com Page - 61 - Total 86

System	Signal	Frequency	Unit
GPS	L1C/A	1575.42 ±1.023 (L1)	
GLONASS	L1	1597.5~1605.8 (L1)	MIL
Galileo	E1B/C	1575.42 ±2.046 (E1)	MHz
BDS	B1I	1561.098 ±2.046 (B1I)	

Table 4-3 GNSS Radio Frequency Table

4.3 Radio Frequency Conduction Measurement

4.3.1 Test Environment

Table 4-4 Test Instruments

Testing Instrument	Power Supply	Murata Coaxial RF Cable
R&S CMW500	Agilent 66319	MXHP32HP1000

4.3.2 Test Standard

The RHF4M603 module passed the test standards of 3GPP TS 51.010-1, 3GPP TS 34.121-1, and 3GPP TS 36.521-1. Each module is strictly tested in the factory to ensure reliable quality.

4.4 Conduction Receiving Sensitivity and Transmission Power

The test indicators for the LTE and GSM receiving sensitivity and transmission power of the RHF4M603 module are as follows:

Table 4-5 GSM Radio Frequency Sensitivity Index

Directory	Sensitivity (Typical)	Sensitivity (Maximum)
GSM850	< - 110	-109.5
EGSM900	< - 110	-109.5
DCS1800	< - 108.5	-108
PCS1900	< - 109.5	-109

Table 4-6 LTE RF Sensitivity Indicators

Directory (Sensitivity)	Requirements of	small	Typical	largest	
-------------------------	------------------------	-------	---------	---------	--

www.risinghf.com Page- 62 - Total 86

	the 3GPP	est		
	agreement			
LTE B1(FDD QPSK PASS >95%)	< - 96.3(10MHz)		-99.2	-98.7
LTE B2(FDD QPSK PASS >95%)	< - 92.3(10MHz)		-99.2	-98.7
LTE B3(FDD QPSK PASS >95%)	< - 93.3(10MHz)		-98.7	-98.2
LTE B4(FDD QPSK PASS >95%)	< - 94.3(10MHz)		-98.7	-98.2
LTE B5(FDD QPSK PASS >95%)	< - 94.3(10MHz)		-99.7	-99.7
LTE B7(FDD QPSK PASS >95%)	< - 93.3(10MHz)		-97.7	-97.2
LTE B8(FDD QPSK PASS >95%)	< - 93.3(10MHz)		-100.2	-99.7
LTE B20(FDD QPSK PASS >95%)	< - 93.3(10MHz)		-100.2	-99.7
LTE B28(FDD QPSK PASS >95%)	< - 94.3(10MHz)		-100.2	-99.7
LTE B66(FDD QPSK PASS >95%)	< - 93.5(10MHz)		-98.7	-98.2

Table 4-7 LTE Radio Frequency Transmission Power Index

Directory	3GPP protocol requirement (dBm)	Minimum	typical	maximum
LTE B1	21 to 25	21	23	24
LTE B2	21 to 25	21	23	24
LTE B3	21 to 25	21	23	24
LTE B4	21 to 25	21	23	24
LTE B5	21 to 25	21	23	24
LTE B7	21 to 25	21	23	24
LTE B8	21 to 25	21	23	24
LTE B20	21 to 25	21	23	24
LTE B28	21 to 25	21	23	24
LTE B66	21 to 25	21	23	24

Table 4-8 GSM Radio Frequency Transmission Power Index

Directory	Maximum power (3GPP)	Maximum power (Typical)	Minimum power (3GPP)
GSM850(GMSK)	33dBm ±2dB	32.3dBm	5dBm ±5dB
EGSM900(GMSK)	33dBm ±2dB	32.2dBm	5dBm ±5dB

www.risinghf.com Page- 63 - Total 86

DCS1800(GMSK)	30dBm ±2dB	29.2dBm	0dBm ±5dB
PCS1900(GMSK)	30dBm ±2dB	29.3dBm	0dBm ±5dB
EGSM900,GSM850 (8PSK) *	26dBm±3dB	26.77dBm	5dBm ±5dB
DCS1800, PCS1900 (8PSK) *	25dBm±3dB	25.25dBm	0dBm ±5dB

^{*}Note: In the 4-slot transmission mode of the GPRS network, the maximum output power will be reduced by 3dB. This design complies with the GSM specifications outlined in Section 13.16 of 3GPP TS 51.010-1.

4.5 GNSS Receiver

The RHF4M603 module contains a complete GNSS solution. Supports joint positioning of multiple systems including GPS, GLONASS, BDS and Galileo. The GNSS function can be turned off or on through the AT command. For details, please refer to the RHF4M603 AT command set.

Table 4-9 GNSS Performance Parameters

Test Items	Descriptio	n	Indicator		
Positioning	CEP-50, Open area		≤2m		
accuracy					
Speed			0.1m/s		
accuracy					
Update			1Hz ~10Hz		
frequency					
CND	Signal strength (dBm)		-130dBm		
CNR	CNR(dBc/Hz)		CN0 L1 42;G1 41;B1L 41;E1 42		
a	Cold start sensitivity (dBm)		-149dBm@GNSS		
Sensitivity	Tracking sensitivity (dBm)		-166dBm@GNSS		
(Typical value)	Recapture sensitivity (dBm)		-159dBm@GNSS		
	G 11	TTFF(s)	<27s (@-130dBm)		
Positioning time	Cold start	Positioning accuracy (m)	<2m		
	Hot start	TTFF(s)	<2s (@-130dBm)		

www.risinghf.com Page- 64 - Total 86

	Positioning accuracy (m)	<2m
D. A.	TTFF(s)	<3s (@-130dBm)
Recaptur	Positioning accuracy (m)	<2m

4.6 Antenna Requirements

Design Requirements for RHF4M603 module Antenna:

♦ Antenna efficiency

Antenna efficiency is the ratio of the input power of the antenna to its emissivity. Due to antenna callback loss, material loss and coupling loss, the radiated power is always lower than the input power, but there are certain index requirements.

♦ S11 or VSWR

S11 indicates the matching degree of the 50-ohm impedance of the antenna, which to some extent affects the antenna efficiency. This indicator can be measured by the VSWR testing method.

♦ Polarization

Polarization is the direction of rotation of the electric field of the antenna in the direction of maximum radiation.

♦ Radiation pattern

The radiation pattern refers to the intensity of the electromagnetic field of the antenna in all directions of the far field, omnidirectional antenna radiation. The half-wave oscillator antenna is the most suitable terminal antenna.

♦ Gain and Directionality

The directionality of an antenna refers to the electromagnetic field intensity of electromagnetic waves in all directions. Gain is the combination of antenna efficiency and antenna directionality.

♦ Interference

Other interference in the PCB panel can also affect the antenna performance of the module. In order to ensure the high performance of the module, the interference must be controlled. Suggestions: such as the LCDC cpem FPC, the audio circuit, the power component should be as far away as possible from the antenna, and do the corresponding isolation and shielding, or the path to do the filtering processing.

www.risinghf.com Page- 65 - Total 86

The specific requirements for antenna indicators are shown in the following table: Table 4-10 Antenna Index Requirements

Design requirements for RHF4M603 module main antenna					
		1 .		.1	1 .
Frequency range	Use the most suitable antenna to	adapt	to	the	relevant
	frequency band				
	GSM850: 70M				
Bandwidth (GSM)	EGSM900: 80M				
Danawiam (GSM)	DCS1800: 170M				
	PCS1900: 140M				
	LTE band1: 250M				
	LTE band2: 140M				
	LTE band3: 170M				
	LTE band4: 445M				
D 1 111 / IMD	LTE band5: 70M				
Bandwidth (LTE	LTE band7: 190M				
	LTE band8: 80M				
	LTE band20: 71M				
	LTE band28: 100M				
	LTE band66: 470M				
Impedance	50Ω				
Input power	>23dBm				
standing-wave ratio	<2.5:1				
Gain	≤2.5dbi				
Efficiency	>40%				
	<0.6 dB: Low Band (< 1 GHz)				
Insertion line loss	< 1.5 dB: Mid Band (1~2.3 GHz)				
	< 2.0 dB: High Band (> 2.3 GHz)				

www.risinghf.com Page- 66 - Total 86

4.7 Power Consumption Characteristics

Table 4-11 Dormant Idle Power Consumption

Test Conditions	Current	Unit	
	value (Avg)		
Module shutdown	< 9.0	uA	
Minimum function Mode (USB	0.86	mA	
disconnected)			
Flight mode (USB disconnected)	0.9	mA	
LTE-FDD @ DRX =0.32S(USB	1 75	mA	
disconnected)	1.75		
LTE-FDD @ DRX =0.64S(USB	1 26	A	
disconnected)	1.30	mA	
LTE-FDD @ DRX =1.28S(USB	1.10		
disconnected)	1.19	mA	
LTE-FDD @ DRX =2.56S(USB	1.00	mA	
disconnected)	1.09		
GSM @BS_PA_MFRMS =2	1.04	mA	
(USB disconnected)	1.84		
GSM @ BS_PA_MFRMS=5	1.46		
(USB disconnected)	1.46	mA	
GSM @ BS_PA_MFRMS=9	1.24		
(USB disconnected)	1.34	mA	
LTE @ DRX=0.64S	0.05		
(USB disconnected)	9.85	mA	
GSM @ MFRMS = 2(USB		<u> </u>	
disconnected)	10.24	mA	
LTE @ DRX=0.64S(USB	24.24		
connection)	24.21	mA	
GSM @ MFRMS = 2(USB			
connection)	24.64	mA	
	Module shutdown Minimum function Mode (USB disconnected) Flight mode (USB disconnected) LTE-FDD @ DRX =0.32S(USB disconnected) LTE-FDD @ DRX =0.64S(USB disconnected) LTE-FDD @ DRX =1.28S(USB disconnected) LTE-FDD @ DRX =2.56S(USB disconnected) GSM @BS_PA_MFRMS =2 (USB disconnected) GSM @ BS_PA_MFRMS=5 (USB disconnected) GSM @ BS_PA_MFRMS=9 (USB disconnected) LTE @ DRX=0.64S (USB disconnected) LTE @ DRX=0.64S (USB disconnected) GSM @ MFRMS = 2(USB disconnected) LTE @ DRX=0.64S(USB connected) LTE @ DRX=0.64S(USB connected)	Module shutdown < 9.0 Minimum function Mode (USB disconnected)	

www.risinghf.com Page- 67 - Total 86

Table 4-12 LTE Data Transmission Power Consumption (GNSS Function Disabled)

		er Consumption (GNSS)	Current power
Band	Channel	Power dBm	consumption mA
LEE EDD D1	18050	22.28	515
LTE-FDD B1	18300	22.2	531
@10Mhz,FRB	18550	21.73	526
LEE EDD DA	18650	22.28	470
LTE-FDD B2	18900	22.07	478
@10Mhz,FRB	19150	22.36	508
THE EDD DO	19250	22.3	500
LTE-FDD B3	19575	22.2	476
@10Mhz,FRB	19900	22.6	515
1.000 EDD D.1	20000	22.18	522
LTE-FDD B4	20175	22.31	458
@10Mhz,FRB	20350	22.14	476
1.555 EDD D.5	20450	22	497
LTE-FDD B5	20525	22	475
@10Mhz,FRB	20600	22	485
155 555 55	20800	22.4	584
LTE-FDD B7	21100	22.3	574
@10Mhz,FRB	21400	22.18	565
AME EDD DO	21500	22.35	527
LTE-FDD B8	21625	22.3	516
@10Mhz,FRB	21750	22.27	525
LEE EDD DOG	24200	22.45	500
LTE-FDD B20	24300	22.29	513
@10Mhz,FRB	24400	22.17	497
LEE EDD DOG	27260	22.25	472
LTE-FDD B28	27435	22.01	458
@10Mhz,FRB	27610	21.77	478
LTE-FDD B66	132022	22.35	535
@10Mhz,FRB	132322	22.24	479

www.risinghf.com Page- 68 - Total 86

1	132622	22.7	515
---	--------	------	-----

Table 4-13 GSM Call Power Consumption (GNSS Function Disabled)

BAND	Power rating & power	Current power consumption (mA)
GSM850	32.3dBm@PCL=5	225
EGSM900	31.8dBm@PCL=5	236
DCS1800	28.89dBm@PCL=0	175
PCS1900	29.13dBm@PCL=0	160

Table 4-14 GPRS Data Transmission Power Consumption (GNSS Function Off)

BAND	Power level & Configuration	Current power consumption (mA)
GSM850	PCL=5@1DL/4UL	515
EGSM900	PCL=5@1DL/4UL	537
DCS1800	PCL=0@1DL/4UL	388
PCS1900	PCL=0@1DL/4UL	349

Table 4-15 EDGE Data Transmission Power Consumption (GNSS Function Disabled)

BAND	Power level &	Current power consumption	
DAND	Configuration	(mA)	
GSM850	PCL=8@1DL/4UL	325	
EGSM900	PCL=8@1DL/4UL	334	
DCS1800	PCL=2@1DL/4UL	288	
PCS1900	PCL=2@1DL/4UL	284	

www.risinghf.com Page- 69 - Total 86

Chapter 5 Interface Electrical Characteristics

5.1 Overview of This Chapter

- ♦ Working storage temperature
- ♦ Module IO level
- ♦ Supply Voltage
- ♦ Electrostatic Characteristic
- ♦ Reliability Index

5.2 Working Storage Temperature

Table 5-1 Working Storage Temperature of RHF4M603 Module

Parameters	Minimum Value	Maximum Value
Normal operating	-30℃	75℃
temperature		
Extreme working	-40°C	85℃
temperature		
Storage temperature	-40℃	90℃

5.3 Module IO Level

The IO levels of the RHF4M603 module are as follows:

Table 5-2 Electrical Characteristics of RHF4M603 Module

Parameters	Parameter Description	Minimum Value	Maximum Value
VIH	Input a logical high-level voltage	0.65* VDD_EXT	VDD_EXT+0.3V
VIL	Input a logical low-level voltage	-	0.35*VDD_EXT
VOH	Output a logical high-level voltage	VDD_EXT- 0.45V	VDD_EXT
VOL	Output a logical low-level voltage	0	0.45V

www.risinghf.com Page- 70 - Total 86

5.4 Power Supply Characteristics

The power supply requirements for the RHF4M603 module are as follows:

Minimum **Typical** Maximum **Parameters Description** Value value value 3.4V 4.2V Module power supply 3.7V 0 VBAT peak current 2A RMS average supply current 700mA **VBAT** Voltage drop during GSM burst transmission 380mV (GSM850/900 PCL=5 transmission) USB VBUS USB insertion detection 3.0V 5.0V 5.25V

Table 5-3 Working Voltage of RHF4M603 Module

NOTE

❖ The power-on time of any interface of the module must not be earlier than the power-on time of the module; otherwise, it may cause abnormality or damage to the module.

5.5 Electrostatic Characteristics

The internal design of the RHF4M603 module has taken into account and implemented corresponding ESD protection. However, ESD problems may also occur during the production assembly and experimental testing of the module. Therefore, application developers need to consider the ESD protection of the final product.

When customers design, in addition to referring to the recommended circuits in the document interface design, the following points also need to be noted:

- ♦ The PCB layout of protective devices should follow a "V" shaped line as much as possible and avoid a "T" shaped line.
- ♦ The ground plane around the module should be kept intact and not divided.
- ❖ During the production, assembly and laboratory testing of the module, attention should be paid to the ESD control of the surrounding environment and the operators.

www.risinghf.com Page- 71 - Total 86

Table 5-4 ESD Characteristics of RHF4M603

Test port	Contact discharge	Air discharge	Unit
VBAT power supply	±4	±8	KV
Antenna interface	±4	±8	KV
Other interfaces	±0.5	±1	KV

5.6 Reliability Index

Table 5-5 Reliability Test of RHF4M603

Table 5-5 Reliability Test of RHF4M603			
Test items	Test Conditions	Reference standard	Test results
Low temperatu re work	Temperature: −40°C Working mode: normal work Test duration: 24h	IEC60068-2-1	Appearance check: Normal Function check: Normal
High temperatu re work	Temperature: 85°C Working mode: normal work Test duration: 24h	JESD22-A108-C	Appearance check: Normal Function check: Normal
Temperat ure cycle	High temperature: 85°C Low temperature: -40°C Working mode: normal work Test duration: 30 Cycles;1h+1h/cycle	JESD22-A105-B	Appearance check: Normal Function check: Normal
Alternatin g hot and humid	High temperature: 55°C Low temperature: 25°C Humidity: 95% ± 3% Working mode: normal work Test duration: 6 Cycles;12h+12h/cycle	JESD22-A101-B	Visual inspection: normal Function check: normal RF indicator check: normal
Temperat ure shock	High temperature: 85 °C Low temperature: −40 °C Temperature change time: <30s	JESD22-A106-B	Appearance check: Normal Function check: Normal

www.risinghf.com Page- 72 - Total 86

	Working mode: no packaging,		
	no		
	Power on, do not boot		
	Test duration: 100		
	Cycles;15min+15min/cycle		
	Height 0.8m, 6 sides each		Visual inspection:
	time, dropped to the horizontal		normal
Drop tost	marble platform	IEC60068-2-32	Function check:
Drop test	Working mode: no packaging,		normal
	no		RF indicator check:
	Power on, do not boot		normal
Low	Temperature: −40°C		Appearance check:
	Working mode: no packaging,	JESD22-A119-C	Normal
temperatu re storage	no power, no boot	JESD22-A119-C	Function check:
Te storage	Test duration: 24 h		Normal
Uigh	Temperature: 85°C		Appearance check:
High temperatu	Working mode: no packaging,	JESD22-A103-C	Normal
	no power, no boot	JESD22-A103-C	Function check:
re storage	Test duration: 24h		Normal

www.risinghf.com Page- 73 - Total 86

Chapter 6 Structure and Mechanical Specification

6.1 Overview of This Chapter

- ♦ Appearance
- ♦ Module Mechanical Dimensions

6.2 Appearance

The RHF4M603 module is a single-sided layout PCBA. The appearance diagram is as follows:

Figure 6-1 Appearance drawing of RHF4M603

6.3 Mechanical Dimension

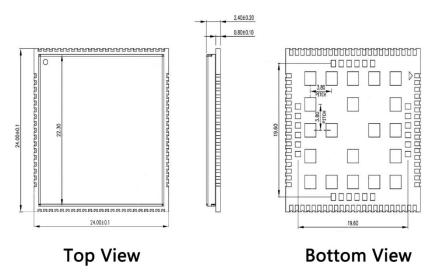


Figure 6-2 Module Front and Bottom Views (Unit: Millimeters)

www.risinghf.com Page- 74 - Total 86

Module recommended packaging:

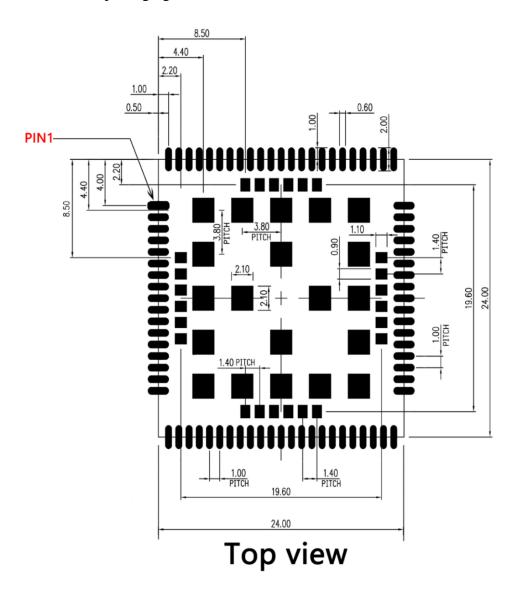


Figure 6-3 Module Recommended Packaging (Unit: Millimeters)

www.risinghf.com Page- 75 - Total 86

Chapter 7 Packaging and Production

7.1 Overview of This Chapter

- ♦ Module packaging and storage
- ♦ Production welding

7.2 Module Packaging and Storage

The RHF4M603 module is packed in braided tape, with 1,000 PCS per reel, and each reel is shipped in the form of vacuum-sealed bags.

The storage of the RHF4M603 module needs to follow the following conditions:

- ♦ The module has a moisture sensitivity rating of level 3.
- ♦ When the ambient temperature is less than 40 degrees Celsius and the air humidity is less than 90%, the module can be stored in a vacuum sealed bag for 12 months.
- ♦ When the vacuum seal bag is opened, if the ambient temperature of the module is below 30 degrees Celsius and the air humidity is less than 60%, the factory can finish the patch within 72 hours, and the module can be reflow welding or other high temperature processes.
- ♦ If the module is in other conditions, it needs to be baked before mounting.
- ❖ If the module needs to be baked, remove the module packaging and bake for 8 hours at 125 degrees Celsius (allowing fluctuations of 5 degrees Celsius up and down)

7.3 Production Welding

The RHF4M603 module is packaged with taping, and the SMT line body needs to be equipped with a 32mm carrier.

- ❖ To ensure the quality of the module paste, the recommended thickness of the steel mesh corresponding to the pad part of the RHF4M603 module is 0.18mm.
- → The recommended temperature for reflow soldering is 238-248 ° C and cannot exceed
 248 ° C.
- ❖ When the PCB is double-sided laid out, the LCC module layout must be processed on the second side. Avoid module component dropping, weld opening and poor internal welding of the module when the module is flipped and reflow due to the module's gravity.

www.risinghf.com Page - 76 - Total 86

The recommended furnace temperature curve graph is shown as follows:

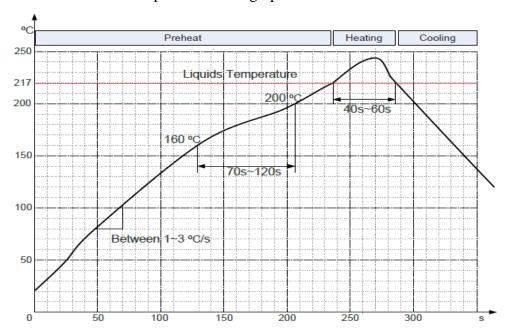


Figure 7-1 reflow soldering temperature curve graph

Table 7-1 Reflux Process Parameters Table

Temperature Range	Time	key Parameter
Preheating zone (40°C ~		Heating rate: 1° C/s ~ 3° C/s
165°C)		
Uniform temperature zone	$(t1\sim t2): 70s\sim 120s$	
(160°C ~210°C)	(1 12). 705 1205	
Reflux zone (>217℃)	(t3~t4): 40s~60s	Peak temperature: 238 °C ~
Kenux Zone (>217 C)	(15, 514): 408, 5008	248℃
Cooling zone	Cooling rate: 2°C/s≤Slope≤	≤5°C/s

www.risinghf.com Page- 77 - Total 86

Chapter 8 Appendix

8.1 Overview of This Chapter

- ♦ Abbreviation
- ♦ Encoding Mode
- ♦ Use safety and precautions

8.2 Abbreviation

Table 8-1 Abbreviations of Terms

Abbreviation	Full Name	
3GPP	Third Generation Partnership Project	
AP	Access Point	
AMR	Adaptive Multi-rate	
BER	Bit Error Rate	
CCC	China Compulsory Certification	
CDMA	Code Division Multiple Access	
СЕ	European Conformity	
CSD	Circuit Switched Data	
CTS	Clear to Send	
DC	Direct Current	
DTR	Data Terminal Ready	
DL	Down Link	
DTE	Data Terminal Equipment	
EU	European Union	
EMC	Electromagnetic Compatibility	
ESD	Electrostatic Discharge	
HSDPA	High-Speed Downlink Packet Access	
HSPA	Enhanced High Speed PacketAccess	
HSUPA	High Speed Up-link Packet Access	
IMEI	International Mobile Equipment Identity	
LED	Light-Emitting Diode	

www.risinghf.com Page 78 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

LTE	Long Term Evolution	
NC	Not Connected	
PCB	Printed Circuit Board	
PCM	Pulse Code Modulation	
PDU	Protocol Data Unit	
PMU	Power Management Unit	
PPP	Point-to-point protocol	
QPSK	Quadrature Phase Shift Keying	
RF	Radio Frequency	
RoHS	Restriction of the Use of CertainHazardous Substances	
SMS	Short Message Service	
TIS	Total Isotropic Sensitivity	
TVS	Transient Voltage Suppressor	
TX	Transmitting Direction	
UART	Universal AsynchronousReceiver-Transmitter	
UMTS	Universal Mobile Telecommunications System	
USIM	Universal Subscriber Identity Module	
USSD	Unstructured Supplementary Service Data	
VSWR	Voltage Standing Wave Ratio	
WCDMA	Wideband Code Division MultipleAccess	
WWAN	Wireless Wide Area Network	

8.3 Encoding Mode

Table 8-2 Time Slot Allocation Table for Different Levels of GPRS/EDGE

Slot class	DL slot number	UL slot number	Active slot number
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4

www.risinghf.com Page79 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5

Table 8-3 Maximum Rate of GPRS

GPRS coding scheme	Max data rata (4 slots)	Modulation type
CS 1 = 9.05 kb/s / time slot	36.2 kb/s	GMSK
CS 2 = 13.4 kb/s / time slot	53.6 kb/s	GMSK
CS 3 = 15.6 kb/s / time slot	62.4 kb/s	GMSK
CS 4 = 21.4 kb/s / time slot	85.6 kb/s	GMSK

Table 8-4 Maximum Rate of EDGE

GPRS coding scheme	Max data rata (4 slots)	Modulation type
MCS $1 = 8.8 \text{ kb/s/ time slot}$	35.2 kb/s	GMSK
MCS $2 = 11.2 \text{ kb/s/ time slot}$	44.8 kb/s	GMSK
MCS $3 = 14.8 \text{ kb/s/ time slot}$	59.2 kb/s	GMSK
MCS $4 = 17.6 \text{ kb/s/time slot}$	70.4 kb/s	GMSK
MCS $5 = 22.4 \text{ kb/s/ time slot}$	89.6 kb/s	8PSK
MCS $6 = 29.6 \text{ kb/s/time slot}$	118.4 kb/s	8PSK
MCS $7 = 44.8 \text{ kb/s/ time slot}$	179.2 kb/s	8PSK
MCS $8 = 54.4 \text{ kb/s/ time slot}$	217.6 kb/s	8PSK
MCS $9 = 59.2 \text{ kb/s/time slot}$	236.8 kb/s	8PSK

Table 8-5 Maximum Rate of LTE-FDD DL

LTE-FDD device category	Max data rate(peak)	Modulation type
Category 1	10Mbps	QPSK/16QAM/64QAM
Category 2	50Mbps	QPSK/16QAM/64QAM
Category 3	100Mbps	QPSK/16QAM/64QAM
Category 4	150Mbps	QPSK/16QAM/64QAM

www.risinghf.com Page80 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

Table 8-6 Maximum UL Rate of LTE-FDD

LTE-FDD device category	Max data rate(peak)	Modulation type
Category 1	5Mbps	QPSK/16QAM
Category 2	25Mbps	QPSK/16QAM
Category 3	50Mbps	QPSK/16QAM
Category 4	50Mbps	QPSK/16QAM

www.risinghf.com Page81 Total 86

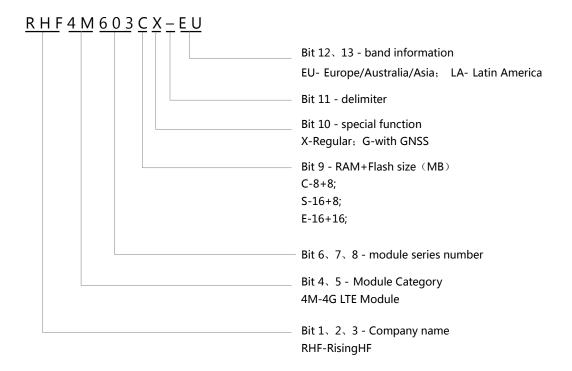
8.4 Safety and Precautions for Use

In order to use the wireless device safely, please inform the user about the safety information:

- ❖ Interference: When the use of wireless devices is prohibited or the use of the device causes interference and security of the electronic device, turn off the wireless device. Because the terminal will send and receive RF signals when it is powered on. It can interfere with TV, radio, computer or other electrical equipment.
- ♦ Medical equipment: In medical and health care facilities where the use of wireless devices is prohibited by express text, please follow the regulations of the site and turn off the device. Some wireless devices may interfere with the medical device, causing the medical device to malfunction or cause errors. If interference occurs, turn off the wireless device and consult a physician.
- ❖ Flammable and explosive areas: In flammable and explosive areas, please turn off your wireless device and follow the relevant label instructions to avoid an explosion or fire. Such as: gas stations, fuel zones, chemical products areas and chemical transportation and storage facilities, areas with explosion hazard signs, areas with "turn off radio equipment" signs.
- ❖ Traffic Safety: Please comply with local laws or regulations in your country or region regarding the use of wireless devices when driving a vehicle.
- ❖ Aviation Safety: When flying, please follow the airline's regulations and regulations regarding the use of wireless equipment. Before taking off, turn off the wireless device to prevent wireless signals from interfering with aircraft control signals.
- ♦ Environmental Protection: Please comply with local laws regarding the handling of equipment packaging materials, equipment or accessories, and support recycling operations.
- ❖ Emergency call: This device uses wireless signals for propagation. Therefore, the network cannot be connected in all cases, so in the emergency, the wireless device cannot be used as the only contact method.

www.risinghf.com Page82 Total 86

Chapter 9 Ordering information


Technical support: Support@RisingHF.com

Sales:

China: Salescn@RisngHF.com

Overseas: Salesww@RisingHF.com

9.1 Part numbering scheme

9.2 Ordering information

Model number	District	Band	RAM+Flash	GNSS
RHF4M603CX-EU			21.45 21.45	×
RHF4M603CG-EU			8MB+8MB	√
RHF4M603SX-EU		LTE: B1/B3/B5/B7/B8/B20/B28		×
RHF4M603SG-EU	Europe/Australia/Asia	GSM: 850/900/180	16MB+8MB	√
RHF4M603EX-EU				×
RHF4M603EG-EU			16MB+16MB	√
RHF4M603CX-LA		LTE:		×
RHF4M603CG-LA	Latin America	B1/B2/B3/B4/B5/B7/B8/B28/B66	8MB+8MB	√

www.risinghf.com Page83 Total 86

RHF4M603 LTE Cat.1 Module Hardware Manual

RHF4M603SX-LA	GSM: 850/900/1800/1900	46140 0140	×
RHF4M603SG-LA		16MB+8MB	√
RHF4M603EX-LA		45140 45140	×
RHF4M603EG-LA		16MB+16MB	√

www.risinghf.com Page84 Total 86

Revision

V0.1 2025-09-02

+ Create

www.risinghf.com Page85 Total 86

Please Read Carefully:

Information in this document is provided solely in connection with RisingHF products. RisingHF reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All RisingHF products are sold pursuant to RisingHF's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the RisingHF products and services described herein, and RisingHF assumes no liability whatsoever relating to the choice, selection or use of the RisingHF products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by RisingHF for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN RISINGHF'S TERMS AND CONDITIONS OF SALE RisingHF DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY WITH RESPECT TO THE USE AND/OR SALE OF RISINGHF PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWSOF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

RISINGHF PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE RISINGHF PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF RISINGHF HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY RISINGHF AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO RISINGHF PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of RisingHF products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by RisingHF for the RisingHF product or service described herein and shall not create or extend in any manner whatsoever, any liability of RisingHF.

RisingHF and the RisingHF logo are trademarks or registered trademarks of RisingHF in various countries.

Information in this document supersedes and replaces all information previously supplied.

The RisingHF logo is a registered trademark of RisingHF. All other names are the property of their respective owners.

© 2015 RISINGHF - All rights reserved

http://www.risinghf.com

www.risinghf.com Page86 Total 86