Product description

RHF0M084 is a low-cost, ultra-low power consumption, ultra-small size LoRaWAN® module designed by Ruixing Hengfang Network (Shenzhen) Co., Ltd. The module uses ST system-on-chip STM32WLE5JC, internally integrated high-performance LoRa® SX126X IP and ultra-low The power consumption MCU is also equipped with Semitach's proprietary 2.4G long-distance transceiver SX1281. The target application of this module is wireless sensor network and other Internet of Things devices, especially where battery power requires low power consumption and long distance.

Product outline

Application

- LoRaWAN® node
- Home automation applications
- Smart security
- Low-power wireless sensor network
- 2.4GHz remote application

Features

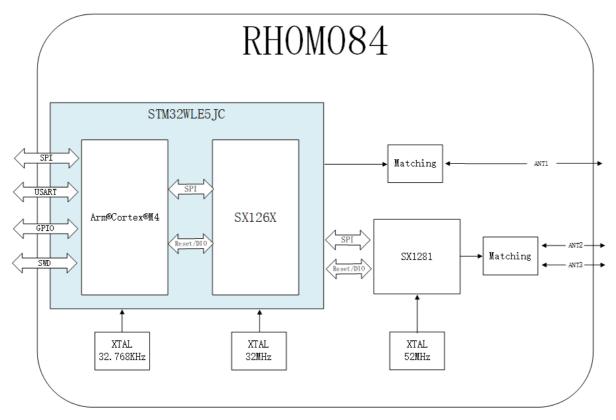
- Low power consumption: as low as 2uA sleep current (WOR mode)
- Small size: 28mm X 23mm X 2.8mm 33 pins SMT
- High performance:

High transmit power::

- TXOP=22dBm@470MHz
- TXOP=22dBm@868/915MHz
- TXOP=13dBm@2400MHz

High receiving sensitivity:

- 470MHz:-134 dBm sensitivity for SF12 with 125KHz BW
- 868MHz:-132 dBm sensitivity for SF12 with 125KHz BW
- 2400MHz:-130 dBm sensitivity for SF12 with 125KHz BW
- Interface
 - SPI
 - USART
 - I2C
 - ADC
 - GPIO
 - SWD
- Embedded LoRaWAN® protocol, AT command, support global LoRaWAN® frequency plan
 - EU868
 - US915 and US915 Hybrid
 - CN779
 - AU915
 - CN470 and CN470 Prequet
 - AS923
 - KR920
 - IN865


General description

RHF0M084 embeds STM32WLE5JC and SX1281, which is very suitable for the design of various IoT nodes.

Based on the multi-mode high-performance SX126X and SX1281, the RHF0M084 module supports (G)FSK and LoRa modes. In 470MHz/868MHz/915MHz LoRa mode, 62.5kHz, 125kHz, 250kHz and 500kHz bandwidths can be used. In 2400MHz LoRa mode, 203.125KHz, 406.25KHz, 812.6KHz, 1625KHz can be used.

Based on STM32WLE5JC MCU, the module provides UART and GPIOs for users to choose according to their applications. It is recommended to use the two-wire interface (SWIM) for programming.

Principle block diagram:

Pin definition

1	VCC GND	33
2	GND ANT_1	32
3	PA8 GND	31
4	PA9 ANT_2	30
5	PA10 GND	29
6	NSS LoRa sub gig RF	28
7	SCK NRST	27
8	MISO PC13	26
9	MOSI SDA	25
10	USART_CTS SCL	24
11	USART_RTS USART_RX	23
12	SWDIO USART_TX	22
13	SWCLK PB5	21
	114 115 117 119 20 20	

Number	Name	Туре	Description
1	VCC	-	Supply voltage for the module
2	GND	-	Ground
3	PA8	I/O	MCU GPIO
4	PA9	I/O	MCU GPIO
5	PA10	I/O	MCU GPIO
6	NSS	I/O	NSS of SPI from MCU or GPIO from MCU, PB12
7	SCK	I/O	SCK of SPI from MCU or GPIO from MCU, PB13
8	MISO	I/O	MISO of SPI from MCU or GPIO from MCU, PB14
9	MOSI	I/O	MOSI of SPI from MCU or GPIO from MCU, PB15
10	USART_CTS	I/O	USART1_CTS from MCU or GPIO from MCU, PA11
11	USART_RTS	I/O	USART1_RTS from MCU or GPIO from MCU, PA12
12	SWDIO	I/O	SWDIO of SWIM for program download
13	SWCLK	I/O	SWCLK of SWIM for program download
14	PA15	I/O	MCU GPIO
15	PB3	I/O	MCU GPIO
16	PB4	I/O	MCU GPIO
17	NC	-	-
18	NC	-	-
19	NC	-	-
20	PA3	I/O	MCU GPIO
21	PB5	I/O	MCU GPIO
22	USART_TX	I/O	USART1_TX from MCU or GPIO from MCU, PB6
23	USART_RX	I/O	USART1_RX from MCU or GPIO from MCU, PB7
24	SCL	I/O	SCL of I2C from MCU or GPIO from MCU, PB8
25	SDA	I/O	SDA of I2C from MCU or GPIO from MCU, PB9
26	PC13	I/O	MCU GPIO
27	NRST	I	Reset trigger input for MCU
28	LoRa sub gig RF	-	RF input/output PORT3 (470MHz/868MHz/915MHz)
29	GND	-	Ground
30	ANT_2	-	RF input/output PORT2 (2400MHz)

Number	Name	Туре	Description
31	GND	-	Ground
32	ANT_1	-	RF input/output PORT1 (2400MHz)
33	GND	-	Ground

Remarks: The 2400MHz antenna port is shipped in batches, and the ANT_1 port is opened by default

Electrical characteristics

• Extreme working conditions

Reaching or exceeding the maximum ratings listed in the table below will cause damage to the equipment.

ltem	Description	min	max	unit
VCCmr	Supply voltage	-0.3	+3.9	V
Tmr	Ambient temperature	-55	+115	°C
Pmr	RF input power	-	+10	dBm

Normal working conditions

ltem	Description	min	max	unit
VCCop	Supply voltage	+1.8	+3.6	V
Тор	Ambient temperature	-40	+85	°C
Рор	RF input power	-	+10	dBm

• Specifications

ITEMs	Parameter			Speci	fications	Unit		
Structure	Size	28(L)X 23	(W) X 2.	8(H)		mm		
Structure	Package	33 pins, S	зMT					
	power supply	3.3V type				V		
	Sleep current	2uA (WD	T on);			uA		
		105mA @	22dBm i	in 470MHz t	уре			
	Operation current	118mA @	22dBm i	mA				
	(Transmitter+MCU)	111mA @	111mA @22dBm in 915MHz type					
		24mA @1	3dBm in					
		6.7mA @	BW125k	Hz, 470MHz	: type			
	Operation current	6.7mA @	BW125k	Hz, 868MHz	type	mA		
	(Receiver+MCU)	6.7mA @	BW125k	Hz, 915MHz	type	ША		
		6.7mA @	BW125k	Hz, 2400MH	lz type			
Electrical		21dBm m	ax @470					
Characteristics	Output power	20dBm m	20dBm max @868MHz					
		19.5dBm	dBm					
		12dBm m	ax @240					
		@SF12, E						
		Fr(MHz)	min	type	max			
	Sensitivity	470	-	-133	-134	dBm		
	Cononing	868	-	-131	-132			
		9 1 5	-	-131	-132			
		2400	-	-128	-130			
	Harmonics	<-36dBm				dBm		
		<-30dBm	above 1	GHz		dBm		
	RFIO	RF port						
	UART			include 2pin	S			
Interface	12C			lude 2 pins				
	ADC		/	de 1pins,12-	bit 1Msps			
	NRST	Manual re		-				
	SPI	1 group of	r SPI, inc	lude 4 pins				

• RF performance

• **RF Power vs Power configuration (470MHz)**

Configuration	1	2	3	4	5	6	7	8	9	10	11
Current (mA)	32.9	35.11	36.5	38.84	40.28	42.14	44.41	46.63	49.27	51.86	54.79
Output Power (dBm)	0.263	1.396	2.081	3. 327	4.131	5.147	6.243	7.226	8.241	9.159	10.082
Configuration	12	13	14	15	16	17	18	19	20	21	22
Current (mA)	58.16	62.3	66.36	70.49	74.02	76.92	80.07	83.57	87.79	93.01	99.63

• **RF Power vs Power configuration (490MHz)**

Configuration	1	2	3	4	5	6	7	8	9	10	11
Current (mA)	36.03	38.55	40.11	42.78	44.52	46.84	49.59	52.3	55.46	58.57	62.08
Output Power (dBm)	0.698	1.833	2.539	3.817	4.638	5.654	6.756	7.709	8.726	9.622	10.526
Configuration	12	13	14	15	16	17	18	19	20	21	22
Current (mA)	66.02	70.86	75.49	79.81	83.42	86.59	90.1	93.83	98.12	103.24	109.78

• **RF Power vs Power configuration (868MHz)**

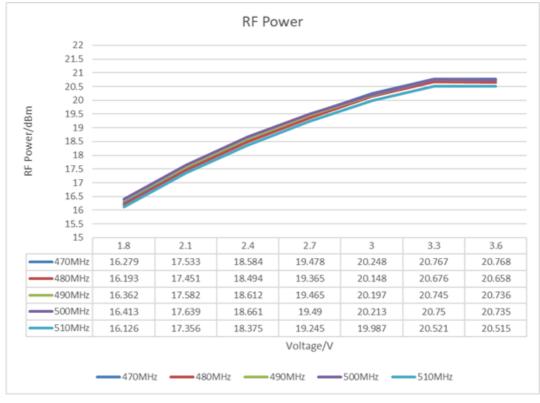
Configuration	1	2	3	4	5	6	7	8	9	10	11
Current (mA)	48.86	52.07	54.06	57.62	59.95	62.82	66.12	69.24	72.68	76	79.54
Output Power (dBm)	-0.466	0.638	1.291	2.505	3.301	4.274	5.358	6.328	7.314	8. 198	9.032
Configuration	12	13	14	15	16	17	18	19	20	21	22
Current (mA)	83.62	88.45	93.08	97.76	102.15	104.86	107.77	110.92	114.43	118.35	124.41
Output Power	9, 917	10, 871	11, 683	12, 464	13.359	14, 464	15, 755	16, 92	17.993	18, 965	20, 01

• **RF Power vs Power configuration (915MHz)**

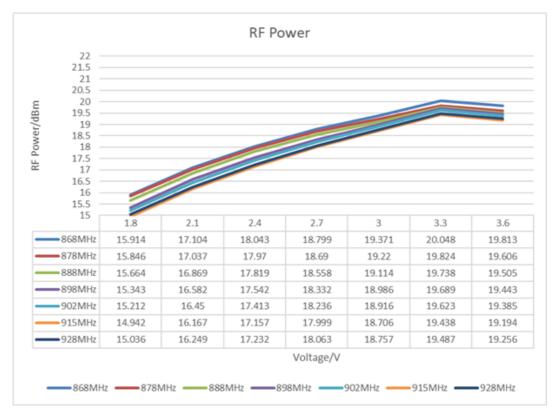
Configuration	1	2	3	4	5	6	7	8	9	10	11
Current (mA)	48.45	51.52	53.39	56.65	58.76	61.35	64.33	67.09	70.2	73.21	76.4
Output Power (dBm)	-2.304	-1.195	-0.511	0.717	1.533	2.536	3.632	4.602	5.601	6.51	7.369
Configuration	12	13	14	15	16	17	18	19	20	21	22
Current (mA)	80.11	84.54	88.81	93.07	95.91	96.96	98.07	99.69	102.06	105.51	111.03
Output Power (dBm)	8. 292	9.258	10.106	10.94	12.049	13.261	14.629	15.893	17.078	18.205	19.452

• RF Power vs Power configuration (2400MHz)

Configuration	-2	-1	0	1	2	3	4	5
Current (mA)				10.83	11.36	12.03	12.68	13.5
Output Power (dBm)				0.92	1.868	2.893	3.811	4.837
Configuration	6	7	8	9	10	11	12	13
Current (mA)	14.35	15.28	16.37	17.44	18.57	19.77	21.12	22.93
Output Power	5, 777	6, 709	7,669	8, 529	9.375	10, 184	11.048	11.801

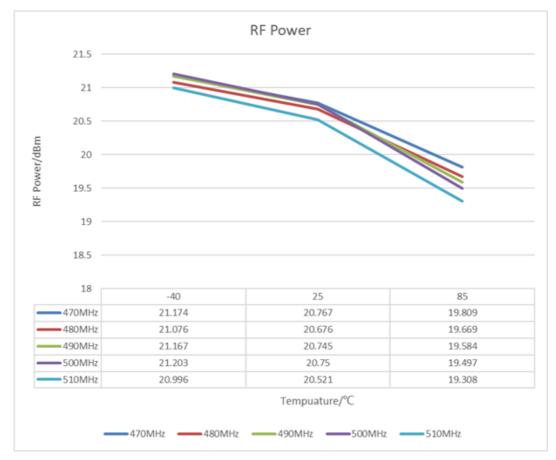

• RF Power vs Power configuration (2460MHz)

Configuration	-2	-1	0	1	2	3	4	5
Current (mA)				10.66	11.14	11.75	12.35	13.1
Output Power (dBm)				0.657	1.613	2.643	3. 538	4.582
Configuration	6	7	8	9	10	11	12	13
Current (mA)	13.88	14.73	15.72	16.68	17.71	18.8	20.04	21.91


• RF Power vs Power configuration (2500MHz)

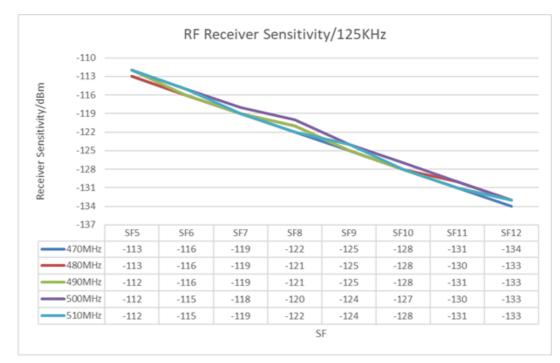
Configuration	-2	-1	0	1	2	3	4	5
Current (mA)				10.96	11.48	12.13	12.76	13.56
Output Power (dBm)				0.946	1.896	2.925	3.85	4.876
Configuration	6	7	8	9	10	11	12	13
Current (mA)	14.4	15.3	16.35	17.38	18.44	19.6	20.92	22.83
Output Power (dBm)	5.828	6.748	7.754	8.606	9.487	10.332	11.195	11.973

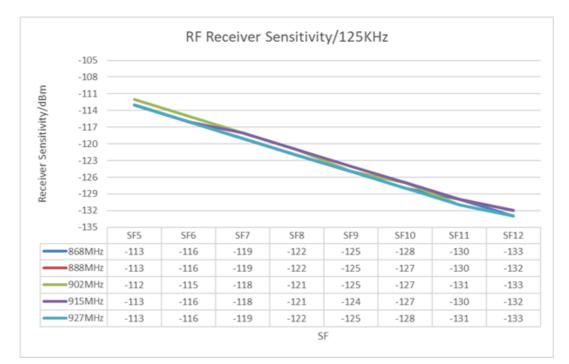

• RF Power vs Voltage (470~510MHz)

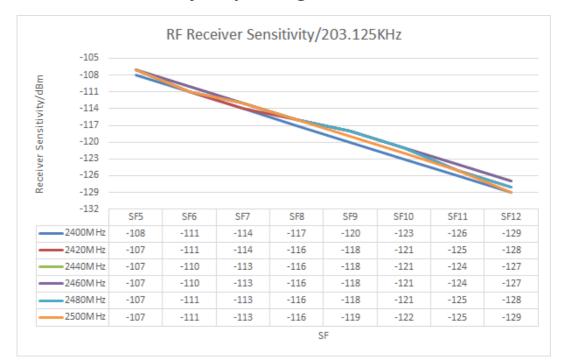

• RF Power vs Voltage (868~915MHz)

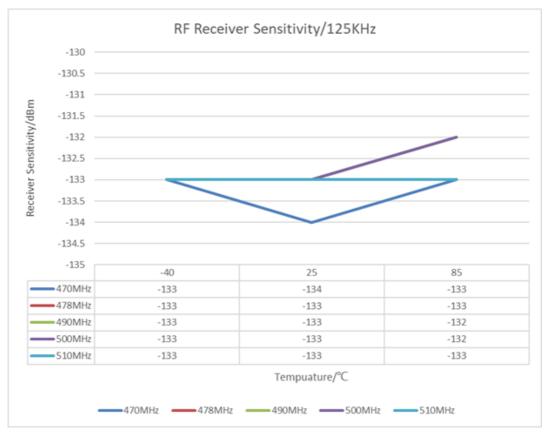
• RF Power vs Voltage (2400~2500MHz)

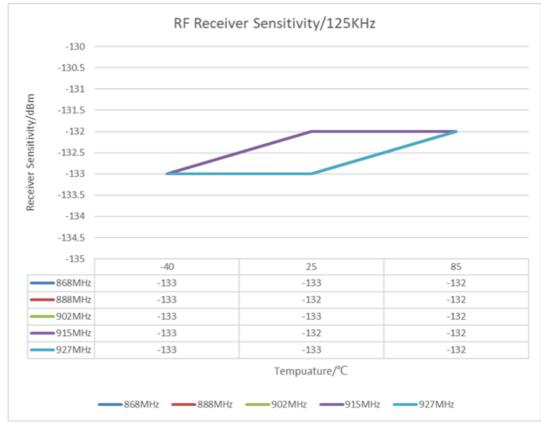
• RF Power VS Temperature (470~510MHz)

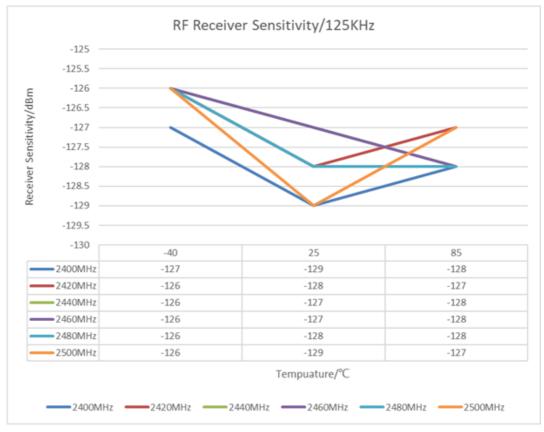

• RF Power VS Temperature (868~915MHz)

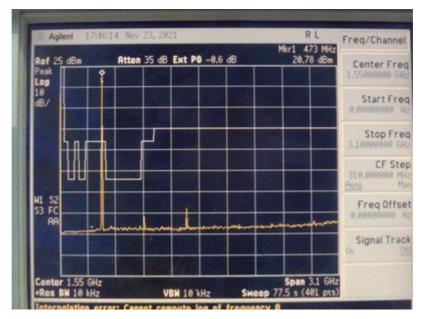

• RF Power VS Temperature (2400~2500MHz)

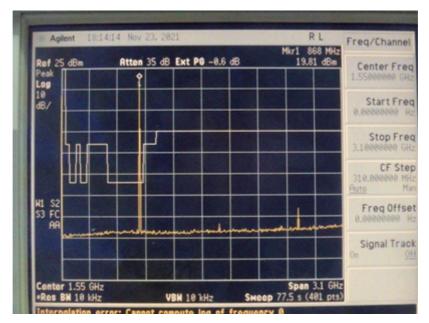

• RF Receiver Sensitivity vs Spreading factor (470~510MHz)

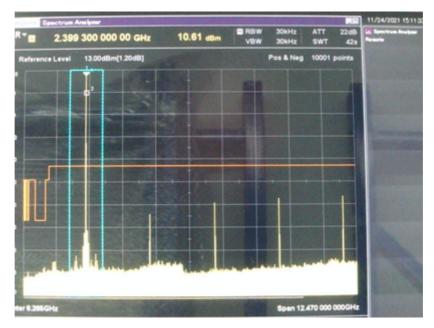

• RF Receiver Sensitivity vs Spreading factor (868~915MHz)


• RF Receiver Sensitivity vs Spreading factor (2400~2500MHz)

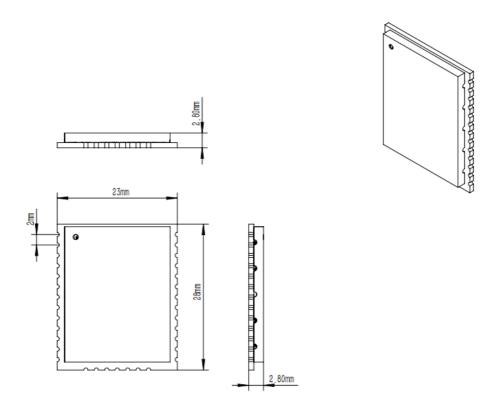

• RF Receiver Sensitivity/SF12 VS Temperature (470~510MHz)

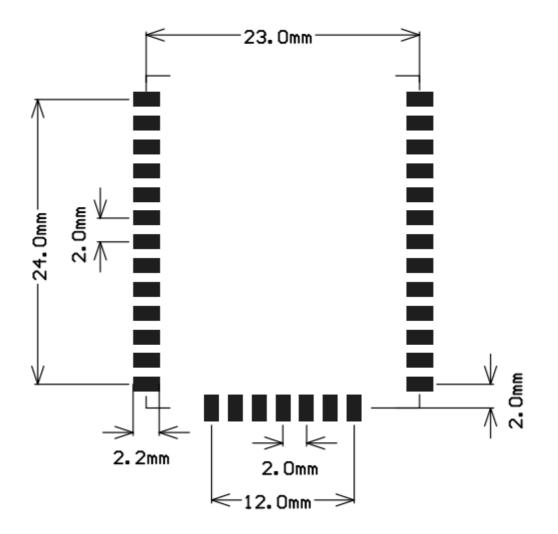

• RF Receiver Sensitivity/SF12 VS Temperature (868~915MHz)


• RF Receiver Sensitivity/SF12 VS Temperature (2400~2500MHz)


Harmonic(25MHz~3GHz)@Frf=470MHz, TXOP=22dBm

Harmonic(25MHz~3GHz)@Frf=868MHz, TXOP=22dBm

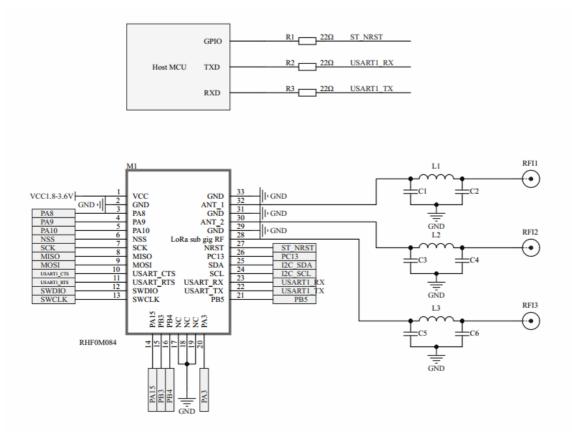

Harmonic(25MHz~3GHz)@Frf=2400MHz, TXOP=22dBm


Application information

Package information

RHF0M084 has a 33pin chip package:

The following figure shows the recommended Layout package size:



Module external interface

Except for a few necessary GPIO ports and a set of SPI ports that are used for the control of the internal radio frequency transceiver, other GPIOs of the MCU have been led out, including UART (used for AT commands) and so on. For those users who wish to develop software or expand peripherals on the on-chip MCU of the module, these rich GPIO interfaces can meet the needs of most applications.

Reference design based on RHF0M084 module

RHF0M084 embeds the global LoRaWAN® protocol and AT command set. This will make the LoRaWAN® node design based on this module very easy. The following is a typical reference design for using RHF0M084 to quickly start LoRaWAN® applications. Just connect UART and NRST to the host MCU and send AT commands.

LoRaWAN® application information

LoRaWAN® application

The topology of the LoRaWAN® network is a star network, and the gateway acts as a relay between

nodes and network servers. The gateway is connected to the network server through a standard IP link,

and the node device uses LoRa® or FSK to communicate with one or more gateways. Communication

is bidirectional, although it is mainly upstream communication from the node to the network server.

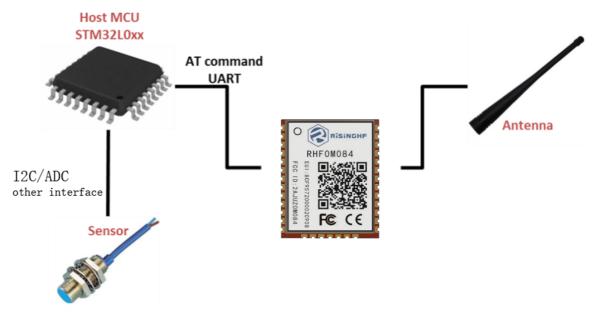
The communication between the node and the gateway uses different frequencies and rates. The choice of rate is a compromise between power consumption and distance, and different rates do not

interfere with each other. According to different spreading factors and bandwidths, the rate of

LoRa®

can be from 300bps to 50Kbps. In order to maximize battery life and network capacity, the network

server manages the node's rate and output power through rate adaptation (ADR).


The node device may transmit on a random channel at any time and at any rate, as long as the following conditions are met:

- 1. The channel currently used by the node is pseudo-random. This makes the system more resistant to interference \
- 2. The maximum transmission time (dwell time of the channel) and duty cycle of each node depends on the frequency band used and local regulations

The current of RHF0M084 module is only 2uA in sleep mode, this module is very suitable for various applications of LoRaWAN®.

Design of LoRaWAN® wireless sensor based on RHF0M084

RHF0M084 is an AT command set that encapsulates the global LoRaWAN® standard protocol. Customers only need a very simple MCU as the master control, and can control RHF0M084 through the serial port, thus easily implementing the LoRaWAN® protocol. This helps customers quickly introduce sensor products to the LoRaWAN® market.

Ordering Information

Part Number	МСИ	TX Power (dBm)	AT Modem
RHF0M084	ROM 256KB / RAM 60KB	22@LF (470MHz)/22dBm@(868/915MHz)/13dBm@2400MHz	Yes

Contact <u>salescn@risinghf.com</u> for more ordering information.